МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

УТВЕРЖДАЮ Декан РТС

Д.И. Кирик

СБОРНИК АННОТАЦИЙ

рабочих программ дисциплин

образовательной программы высшего образования

Направление подготовки «11.03.02 Инфокоммуникационные технологии и системы связи»,

направленность профиль образовательной программы

«Медиатехнологии и телерадиовещание»

1. Аннотации рабочих программ дисциплин (модулей) базовой части

Б1.О.01 История (история России, всеобщая история)

Цели освоения дисциплины

Целью преподавания дисциплины «История (история России, всеобщая история)» является:

формирование систематизированных знаний об основных закономерностях и особенностях исторического процесса, определение места россииской цивилизации в мировом историческом процессе с учетом стремления к объективности в его освещении; формирование гражданской позиции.

Место дисциплины в структуре ОП

Дисциплина «История (история России, всеобщая история)» Б1.О.01 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «История (история России, всеобщая история)» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах (УК-5)

Содержание дисциплины

Раздел 1. Введение в историческую науку

История как наука: предмет, цели, задачи изучения. Сущность, формы и функции исторического знания. Исторический источник: понятие и классификация. Виды источников.

Раздел 2. Методология исторической науки

Методология истории. Историография истории. История России как неотъемлемая часть всемирной истории. Вспомогательные исторические дисциплины.

<u>Раздел 3. Русские земли и мир в Средние века (V - XV вв.)</u>

Восточное славянство в VII - сер. IX вв. Русь в IX - нач. XI вв. Научные дискуссии о понятии "российская цивилизации". Восточные славяне: расселение, быт, верования, хозяйственные занятия, родоплеменные отношения. Взаимоотношения восточных славян с соседями. Формирование территории Древней Руси. Отношения восточнославянских

племен с соседними народами. Формирование древнерусского государства. Институт княжеской власти и его развитие в IX - XI вв. Города и их роль в системе административных и политических отношений Древней Руси. Древнерусское право. Категории свободного и зависимого населения. Экономическое развитие Древней Руси. Роль международной торговли по пути «Из варяг в греки». Развитие частного землевладения: особенности княжеской и боярской вотчин. Крещение Руси. Картина мира древнерусского человека. Внешняя политика киевских князей. Связи Руси с европейскими странами и народами. Древняя Русь и Византия. Дипломатия Древней Руси. Культура Превней Руси. Повседневная жизнь и быт. Восточное славянство в VII сер. IX вв. Русь в IX - нач. XI вв. Научные дискуссии о понятии "российская цивилизации". Восточные славяне: расселение, быт, верования, хозяйственные занятия, родоплеменные отношения. Взаимоотношения восточных славян с соседями. Формирование территории Древней Руси. Отношения восточнославянских племен с соседними народами. Формирование древнерусского государства. Институт княжеской власти и его развитие в IX - XI вв. Города и их роль в системе административных и политических отношений Древней Руси. Древнерусское право. Категории свободного и зависимого населения. Экономическое развитие Древней Руси. Роль международной торговли по пути «Из варяг в греки». Развитие частного землевладения: особенности княжеской и боярской вотчин. Крещение Руси. Картина мира древнерусского человека. Внешняя политика киевских князей. Связи Руси с европейскими странами и народами. Древняя Русь и Византия. Дипломатия Древней Руси. Культура Древней Руси. Повседневная жизнь и быт. Раздел 4. Россия и мир в XVI - XVII вв.

Развитие процесса централизации России в XVI в. Судебник 1550 г. Сложности и противоречия в развитии российской государственности. Развитие крепостнических тенденций. Борьба за присоединение к России западнорусских и южнорусских земель. Присоединение Великой Перми, колонизация Поволжья, Приуралья. Начало присоединения Зап. Сибири. Культура России втор. пол. XV-XVI вв. Смутное время. Ведущие мировые исторические события указанного периода Раздел 5. Россия и мир в XVIII в.

Эпоха Петра I. Эпоха Дворцовых переворотов. Правление Екатерины Великой: просвещенный абсолютизм. Россия в системе международных отношений XVIII вв. Раздел 6. Россия и мир в XIX в.

Участие в антинаполеоновских коалициях. Отечественная война 1812 г. "Священный союз". Россия в центре европейский дипломатии. Неосуществленные замыслы реформ и разочарование общества. Ориентация на использование принципов авторитаризма. Сверхцентрализация госуправления. Включение дворянского самоуправления в систему госвласти. Идеология самодержавия. Теория официальной народности. Политика в области просвещения и образования. Попытки решения назревших социальноэкономических и политических проблем традиционными методами. Европейские революции 1848-49 гг. Состояние восточного вопроса. Причины, этапы и ход Крымской войны. Российская культура в пер. пол. XIX в. Внутреннее и международное положение России в сер. XIX в. Содержание и характер крестьянской реформы. Сельское хозяйство после реформы 1861 г. Новый этап в гражданском "раскрепощении". Новое земское и городское положения. Политика в области просвещения и цензуры. Общественное движение в 80 - нач. 90-х гг. XIX в. Внешняя политика России в пореформенный период. Восточный вопрос. А. Горчаков. Россия и объединение Германии. Борьба за пересмотр условий Парижского мирного договора. "Союз трех императоров". Отношения России с Китаем, Японией и США. Присоединение к России Средней Азии. Оформление франкорусского союза. Русская культура XIX в.

<u>Раздел 7. Россия и мир в XX вв.</u>

Причины и последствия событий 25 октября 1917 г. Гражданская война и интервенция, их результаты и последствия. Российская эмиграция. Социально- экономическое развитие страны в 20-е гг. НЭП. Формирование однопартийного политического режима. Образование СССР. Культурная жизнь страны в 20-е гг. Внешняя политика. Курс на строительство социализма в одной стране и его последствия. Социально-экономические преобразования в 30-е гг. СССР накануне и в начальный период второй мировой войны. Великая Отечественная война. Социально-экономическое развитие, общественно-политическая жизнь, культура, внешняя политика СССР в послевоенные годы. Холодная война. Попытки осуществления политических и экономических реформ. СССР в середине 60-80-х гг.: нарастание кризисных явлений. Советский Союз в 1985-1991 гг. Постсоветский период в истории России. Перестройка. Распад СССР. Октябрьские события 1993 г. Становление новой российской государственности (1993-99 гг.). Раздел 8. Россия и мир в начале XXI вв.

Россия на пути радикальной социально- экономической модернизации. Культура в современной России. Внешнеполитическая деятельность в условиях новой геополитической ситуации.

Раздел 9. Мировая история в начале XXI вв.

Ключевые мировые события в оценке современной исторической школы

Раздел 10. Новейшая история России

Ключевые отечественные события в оценке современной исторической школы

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.О.02 Философия

Цели освоения дисциплины

Целью преподавания дисциплины «Философия» является:

формирование философского способа мышления, понимание суммы полученных знаний в связи с наиболее общими принципами познания и идеями универсального характера. В результате изучения дисциплины у студентов должны сформироваться знания, умения и навыки, позволяющие проводить самостоятельный анализ глобальных, общечеловеческих и конкретных явлений современной жизни.

Место дисциплины в структуре ОП

Дисциплина «Философия» Б1.О.10 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02

Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Философия» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1)
- Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах (УК-5)
- Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни (УК-6)

Содержание дисциплины

Раздел 1. Введение в философию

Что такое философия? Особенности философского мышления. Отличия от др. форм знания и наук. Связь с другими сферами интеллектуальной деятельности. Основные понятия философии.

Раздел 2. Структура философии как предмета изучения. Часть 1: метафизика Особенности структуры философии. Философские теоретические науки: метафизика, онтология, гносеология (эпистемология), формальная и диалектическая логики. Раздел 3. Структура философии как предмета изучения. Часть 2: философская антропология

Философские практические науки: этика, эстетика, аксиология, философская антропология и социальная философия и др. науки гуманитарного цикла, в которых применяется философский подход к решению насущных проблем.

применяется философский подход к решению насущных проблем.

Раздел 4. История философии. Часть 1: Античность и философия эпохи эллинизма.

Философские учения досократиков (Милетская школа философии о природе сущего).

Элейская школа философии о едином бытии и учение Гераклита о становлении.

Пифагорейство и античный атомизм. Софистика и Сократ (Горгий, Протагор).

Философское учение Платона об идеях, познании, о добродетелях и государстве.

Основные понятия метафизики Аристотеля. Физика, этика, политика и логические труды Аристотеля. Философия эпохи эллинизма. Общие черты эллинистической философии. Основные понятия кинизма, эпикуреизма, стоицизма, скептицизма.

<u>Раздел 5. История философии. Часть 2: Античное начало и Средние века, философия</u> эпохи Возрождения.

Библейская традиция и христианское богословие. Бог-творец и понятие креации. Время и мировая история. Христианская антропология и мистика, ее рецепция в исламе. Вопрос о соотношении веры и знания в схоластике. Спор об универсалиях (реализм, номинализм, концептуализм). Гуманистический пафос философии Возрождения.

Раздел 6. История философии. Часть 3: Новое время. Философия эпохи Просвещения. Обоснование экспериментального метода Ф. Бэконом. Эмпиризм Т. Гоббса и Дж. Локка. Рациональная метафизика Р. Декарта, Б. Спинозы, Г. Лейбница. Антиклерикальный и

антимонархический пафос философии Просвещения. Просветительские идеи в Англии, Франции, Германии, России.

Раздел 7. История философии. Часть 4: И. Кант и немецкая классическая философия. Трансцендентальная философия И.Канта: новый взгляд на физику, мораль, искусство. Общий замысел и основные понятия наукоучения И. Фихте. Философия тождества Ф. Шеллинга. Диалектический метод в систематической философии Г. Гегеля.

<u>Раздел 8. История философии. Часть 5: Марксизм и позитивизм, постклассическая философия.</u>

Позитивизм: этапы развития. Рецепция диалектики Гегеля в марксизме.

Иррационалистические настроения в философии XIX-XX веков.

Раздел 9. История философии. Часть 6: Русская философия.

Историософия П.Я. Чаадаева. Спор славянофилов и западников. Философия всеединства В.С. Соловьева. Религиозно-философские искания начала XX века. Марксизм в России. Представители неотомизма и неопатристический синтез русского зарубежья XX века. Раздел 10. История философии. Часть 7: основные тенденции второй половины XX века. Основные понятия феноменологической философии. Философская герменевтика. Онтологический стиль мышления М. Хайдеггера. Современный кризис естественных наук и его философская оценка.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.О.03 Иностранный язык

Цели освоения дисциплины

Целью преподавания дисциплины «Иностранный язык» является: повышение уровня владения иностранным языком, достигнутого на предыдущей ступени образования, и овладение студентами необходимым и достаточным уровнем коммуникативной компетенции для решения социально-коммуникативных задач в различных областях бытовой, культурной, профессиональной и научной деятельности при общении с зарубежными партнерами, а также для дальнейшего самообразования.

Место дисциплины в структуре ОП

Дисциплина «Иностранный язык» Б1.О.09 является базовой дисциплиной цикла учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Иностранный язык» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах) (УК-4)
- Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах (УК-5)

Содержание дисциплины

Раздел 1. Социально-культурная сфера общения

O себе. Стили общения. О городе. Родной город, Санкт-Петербург, Лондон, Вашингтон. Ориентирование в городе.

Раздел 2. Учебно-познавательная сфера общения

Высшее образование в России и за рубежом. СПбГУТ. Студенческая жизнь.

Международные программы обмена для студентов. Техническое образование в России и за рубежом. Роль иностранного языка в современном мире. Деловой стиль общения. Анкета, мотивационное письмо, резюме, электронное письмо.

Раздел 3. Профессиональная сфера общения

Профессии в сфере информационных технологий и телекоммуникаций. Деловой стиль общения. Интервью о приеме на работу. Составление служебных записок.

Раздел 4. Профессиональная сфера общения (продолжение)

Информационные технологии. Научно-технический прогресс и его достижения в сфере инфокоммуникационных технологий и систем связи. Виды сетей связи. Средства связи. Информационная безопасность. Деловой стиль общения. Различные виды документов. Виды делового письма и правила его оформления.

Общая трудоемкость дисциплины

216 час(ов), 6 ЗЕТ

Форма промежуточной аттестации

Зачет, Экзамен

Б1.0.04 Инженерная и компьютерная графика

Цели освоения дисциплины

Целью преподавания дисциплины «Инженерная и компьютерная графика» является:

формирование фундаментальных знаний будущих специалистов в области моделирования изделий и создания проектно-конструкторской и технологической документации с использованием современных методов и средств информационных

средств и технологий, применение полученных знаний и умений для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Инженерная и компьютерная графика» Б1.О.06 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Инженерная и компьютерная графика» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)

Содержание дисциплины

<u>Раздел 1. Введение. Методы проецирования. 3d моделирование.</u>

Предмет курса, его роль и значение в подготовке инженера. Методы проецирования. Центральное и параллельное проецирование и их основные свойства. Система двух и трёх плоскостей. Зd моделирование.

Раздел 2. Основные сведения об ЕСКД. Правила оформления чертежей.

Понятия о стандарте и стандартизации. Категории стандартов. Стандарты ЕСКД:состав, классификация, обозначения.Стандарты ЕСКД на оформление чертежей:

форматы,масштабы, линии,шрифты чертёжные.Оформление и чертежа.

Раздел 3. Изображения. Нанесение размеров на чертежах.

Классификация изображений: виды, разрезы, сечения и выносные элементы. Условности и упрощения в изображениях. Графическое изображение материалов на чертежах. Общие правила нанесенияразмеров на чертежах(выносные, размерные линии, размерные числа, условные знаки).

Раздел 4. Чертежи деталей.

Виды изделий и конструкторских документов. Обозначениеконструкторских документов. Чертежи деталей: содержание и требование к оформлению. Связь формы детали снеобходимымчислом изображений. Выбор главного изображения. Основные методики назначения числа размеров начертеже: размеры формы и взаимного расположения, базы для отсчета размеров. Условности изображения резьбы на стержне и в отверстии.

Раздел 5. Конструкторская документация на сборочную единицу. Изображения разъёмных и неразъёмных соединений.

Конструкторская документация на сборочную единицу. Виды чертежей и их назначения. Сборочный чертёж: содержание и требование к оформлению. Спецификация: назначение порядок заполнения. Виды разъёмных соединений, Виды неразъёмных соединений.

Раздел 6. Чтение и деталирование чертежа сборочной единицы.

Общая методика чтения чертежа сборочной единицы. Учет условностей изображения на сборочных чертежах. Последовательность чтения и особенности деталирования.

Раздел 7. Схемы электрические.

Общие требования к выполнению электрических схем. Правила выполнения принципиальных схем. Правила выполнения перечня элементов.

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.0.05 Теория вероятностей и математическая статистика

Цели освоения дисциплины

Целью преподавания дисциплины «Теория вероятностей и математическая статистика» является:

1) освоение базовых знаний и принципов в области теории вероятностей и математической статистики; 2) формирование научного представления о методах исследования случайных явлений и применение изученных методов для построения вероятностно-статистических моделей

Место дисциплины в структуре ОП

Дисциплина «Теория вероятностей и математическая статистика» Б1.О.05 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)

Содержание дисциплины

Раздел 1. Случайные события

Теоретико-множественное представление событий. Невозможное, достоверное события. Классическое определение вероятности. Алгебра событий. Основные теоремы о вероятности. Геометрическая вероятность. Схема повторных испытаний. Формула Бернулли. Интегральная и локальная теоремы Лапласа. Формула Пуассона Раздел 2. Случайные величины

Дискретная случайная величина. Закон распределения. Числовые характеристики, их свойства. Основные дискретные распределения: биномиальное, геометрическое, распределение Пуассона. Непрерывные распределения. Дифференциальная и интегральная функции распределения. Числовые характеристики. Основные непрерывные распределения: равномерное, экспоненциальное, нормальное. Свойства нормальной кривой. Правило трёх сигм. Функции случайной величины.

Раздел 3. Случайный вектор

Дискретный случайный вектор. Способ задания, числовые характеристики. Понятие зависимости компонент. Характеристики взимосвязи компонент. Непрерывный случайный вектор. Плотность распределения, совместная и маргинальная. Числовые характеристики. Примеры двумерных распределений: равномерное и нормальное. Неравенство Чебышёва. Центральная предельная теорема

Раздел 4. Основы статистики

Генеральная совокупность и выборка. Способы визуализации статистических данных. Ряд распределения, точечный и интервальный. Статистические оценки параметров распределения, точечное и интервальное оценивание. Понятие статистической гипотезы. Ошибки первого и второго. Статистический критерий. Критическая область. Примеры проверки статистических гипотез -критерий согласия Пирсона.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.06 Информатика

Цели освоения дисциплины

Целью преподавания дисциплины «Информатика» является: подготовка будущих специалистов по направлению специальности, владеющих теоретическими знаниями, практическими навыками применения перспективных методов, современных средств информационных технологий и умением и использовать эти знания для успешного овладения последующих специальных дисциплин учебного плана; развитие творческих способностей студентов и умения решения задач различного направления

Место дисциплины в структуре ОП

Дисциплина «Информатика» Б1.О.06 является базовой дисциплиной цикла учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Информатика» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)
- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения (ОПК-5)
- Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1)

Содержание дисциплины

Раздел 1. Моделирование как метод познания. Архитектура и аппаратные средства ПК. Моделирование как метод познания. Объект, субъект, цель моделирования. Цели, задачи, решаемые с помощью моделей. Эволюция и развитие Компьютеров. Архитектура ПК. Взаимодействие операционной системы с аппаратными средствами, драйверами, прикладным ПО, BIOS, виртуальными машинами. Загрузка ОС. Файловые системы. Жесткий диск. Типы файлов (исполняемые и т.п.) Многозадачность однопроцессорных ПК. Идея открытых исходных кодов.

Раздел 2. АЦП. Кодирование информации.

Принципы аналогово-цифрового и цифро-аналогового преобразований. Кодирование информации. Передача аналоговых данных с помощью аналоговых сигналов. Передача цифровых данных с помощью аналоговых сигналов. Передача аналоговых данных с помощью цифровых сигналов. Передача цифровых данных с помощью цифровых сигналов Раздел 3. Помехоустойчивые способы передачи информации

Теорема Котельникова. Дельта-модуляция. Принципы технологии 5G. Помехоустойчивое кодирование. Бит четности. Код Хемминга. Графическая интерпретация. Таблица Хемминга. Кодирование чисел. три подхода для кодирования отрицательных чисел. Раздел 4. Принципы защиты информации, криптографии.

Способы обеспечения тайны передачи информации. Шифр Виженера. Шифрование про помощи случайных чисел. Шифрование с помощью псевдослучайных чисел. Требования

для криптостойких хэш сумм. Алгоритм Диффи-Хэллмана. Электронная подпись. Лицензионный ключ.

Раздел 5. Программные средства реализации информационных процессов Служебные программы, утилиты. Драйверы. Архиваторы. Антивирусные программы. Встроенные программы. Прикладное ПО. Прикладное ПО специального назначения. Среды программирования. Программные средства для мобильных устройств. Программные средства для периферийных устройств. ГОСТ Р ISO/МЭК 26300-2010 Информационная технология (ИТ).

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.07 Физика

Цели освоения дисциплины

Целью преподавания дисциплины «Физика» является: фундаментальная подготовка студентов по физике; формирование навыков использования основных законов дисциплины к решению задач, связанных с профессиональной деятельностью; формирование у студентов научного мировоззрения, умения анализировать и находить методы решения физических проблем, возникающих в области, связанной с профессиональной деятельностью. Актуальность изучения учебной дисциплины в рамках основной профессиональной образовательной программы обусловлена необходимостью освоения студентами основных законов классической механики, электродинамики; освоение методов решения типичных физических задач, изучения методов проведения и обработки физического эксперимента, что позволяет формировать и развивать общепрофессиональные компетенции будущего специалиста.

Место дисциплины в структуре ОП

Дисциплина «Физика» Б1.О.07 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Физика» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1)

Содержание дисциплины

Раздел 1. Механика

Кинематика материальной точки. Законы Ньютона. Закон изменения и сохранения импульса системы материальных точек. Момент импульса. Закон изменения и сохранения момента импульса системы материальных точек. Момент инерции твердого тела. Основное уравнение динамики вращательного движения. Работа силы. Консервативные силы. Связь консервативной силы и потенциальной энергии. Закон изменения и сохранения полной механической энергии.

Раздел 2. Электростатика

Электрический заряд. Закон Кулона. Электростатическое поле в вакууме. Вектор напряженности электрического поля. Силовые линии. Электростатическая теорема Гаусса. Потенциальный характер электростатического поля. Диэлектрики в электростатическом поле. Проводники в электростатическом поле. Электроемкость проводника и конденсатора. Энергия взаимодействия системы зарядов. Энергия заряженного конденсатора. Объемная плотность энергии электрического поля.

Раздел 3. Электрический ток

Электрический ток и его характеристики. Закон Ома. ЭДС. Закон Ома для неоднородного участка цепи.

Раздел 4. Магнитное поле

Магнитное поле. Сила Лоренца. Закон Био - Савара - Лапласа. Сила Ампера. Контур с током в магнитном поле. Магнитное поле в веществе. Виды магнетиков.

Раздел 5. Электромагнетизм

Явление взаимной индукции. Энергия магнитного поля. Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла.

Раздел 6. Колебания и волны

Гармонические колебания. Свободные незатухающие гармонические колебания. Свободные затухающие колебания в механической системе и электрическом контуре. Сложение колебаний. Вынужденные колебания в механической системе и электрическом контуре. Волны и их характеристики. Интерференция волн. Стоячие волны. Скорость распространения упругой волны. Интенсивность волны. Элементы акустики. Эффект Доплера. Уравнение Даламбера для электромагнитной волны. Свойства электромагнитных волн. Интенсивность ЭМВ. Геометрическая оптика. Принцип Ферма.

Общая трудоемкость дисциплины

396 час(ов), 11 ЗЕТ

Форма промежуточной аттестации

Б1.0.08 Безопасность жизнедеятельности

Цели освоения дисциплины

Целью преподавания дисциплины «Безопасность жизнедеятельности» является:

формирование профессиональной культуры безопасности, предполагающей готовность и способность выпускника использовать приобретенную совокупность знаний, умений и навыков для обеспечения безопасности в сфере профессиональной деятельности и в условиях чрезвычайных ситуаций и военных конфликтов; формирование нетерпимого отношения к проявлениям экстремизма, терроризма и противодействия им в профессиональной и повседневной деятельности; получение знаний, умений и навыков, необходимых для становления обучающихся вузов в качестве граждан способных и готовых к выполнению воинского долга и обязанности по защите своей Родины в соответствии с законодательством РФ

Место дисциплины в структуре ОП

Дисциплина «Безопасность жизнедеятельности» Б1.О.22 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Безопасность жизнедеятельности» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов (УК-8)
- Способен формировать нетерпимое отношение к проявлениям экстремизма, терроризма, коррупционному поведению и противодействовать им в профессиональной деятельности (УК-10)

Содержание дисциплины

Раздел 1. Общевоинские уставы ВС РФ

Общевоинские уставы Вооруженных Сил Российской Федерации, их основные требования

и содержание. Внутренний порядок и суточный наряд. Общие положения Устава гарнизонной и караульной службы

Раздел 2. Строевая подготовка

Строевые приемы и движение без оружия

Раздел 3. Огневая подготовка из стрелкового оружия

Основы, приемы и правила стрельбы из стрелкового оружия. Назначение, боевые свойства, материальная часть и применение стрелкового оружия, ручных противотанковых гранатометов и ручных гранат. Выполнение упражнений учебных стрельб из стрелкового оружия

Раздел 4. Основы тактики общевойсковых подразделений

Вооруженные Силы Российской Федерации их состав и задачи. Тактико-технические характеристики основных образцов вооружения и техники ВС РФ. Основы общевойскового боя. Основы инженерного обеспечения. Организация воинских частей и подразделений, вооружение, боевая техника вероятного противника

Раздел 5. Радиационная, химическая и биологическая защита

Ядерное, химическое, биологическое, зажигательное оружие. Радиационная, химическая и биологическая защита

Раздел 6. Военная топография

Местность как элемент боевой обстановки. Измерения и ориентирование на местности без карты, движение по азимутам. Топографические карты и их чтение, подготовка к работе. Определение координат объектов и целеуказания по карте

Раздел 7. Основы медицинского обеспечения

Медицинское обеспечение войск (сил), первая медицинская помощь при ранениях, травмах и особых случаях

Раздел 8. Военно-политическая подготовка

Россия в современном мире. Основные направления социально-экономического, политического и военно-технического развития страны

<u>Раздел 9. Россия в современном мире. Основные направления социально-экономического, политического и военно-технического развития страны</u>

Военная доктрина РФ. Законодательство Российской Федерации о прохождении военной службы

<u>Раздел 10. Опасности в сфере профессиональной деятельности, при угрозе возникновения</u> <u>чрезвычайных ситуаций и военных конфликтов</u>

Физические негативные факторы и защита от их воздействия: вибрация, шум, инфразвук, ультразвук, электромагнитные излучения, тепловые излучения, лазерное излучение, ультрафиолетовые излучения, ионизирующие излучения, электрический ток и статическое электричество, механические факторы и факторы комплексного характера. Биологические негативные факторы; химические негативные факторы (вредные вещества). Опасные факторы при угрозе возникновения чрезвычайных ситуаций и военных конфликтов

<u>Раздел 11. Методы оценки опасностей в сфере профессиональной деятельности и прогнозирование последствий в чрезвычайных ситуациях</u>

Инструментальный контроль основных параметров производственной среды: микроклимат, уровень аэроионного состава воздуха, освещенность, зашумлённость. Исследование опасностей трехфазных сетей переменного тока. Прогнозирование последствий аварий на взрывоопасных, химических и радиационных промышленных объектах. Первая помощь при остановке сердца (базовая реанимация)

<u>Раздел 12. Безопасные условия жизнедеятельности для сохранения природной среды и обеспечения устойчивого развития общества</u>

Законодательство РФ о защите окружающей среды, промышленной безопасности, пожарной безопасности и чрезвычайных ситуациях. Экологическая безопасность в повседневной жизни и в профессиональной деятельности для сохранения природной среды и обеспечения устойчивого развития общества

<u>Раздел 13. Правовые нормы противодействия экстремизму, терроризму и алгоритмы действий при террористической угрозе</u>

Сущность проявления экстремизма и терроризма. Терроризм в XXI веке. Основные факторы, обусловливающие возникновение терроризма в Российской Федерации. Система противодействия терроризму в Российской Федерации. Рекомендации гражданам от Национального антитеррористического комитета и ФСБ России при террористической угрозе. Алгоритмы действий при террористической угрозе

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.09 Высшая математика

Цели освоения дисциплины

Целью преподавания дисциплины «Высшая математика» является: формирование знаний, умений и навыков, позволяющих проводить самостоятельный анализ проблем, возникающих в различных областях профессиональной деятельности.

Место дисциплины в структуре ОП

Дисциплина «Высшая математика» Б1.О.07 является базовой дисциплиной цикла учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Высшая математика» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)

Содержание дисциплины

Раздел 1. Элементы алгебры

Комплексные числа в алгебраической форме; арифметические операции над ними. Умножение, деление и возведение в степень комплексных чисел в тригонометрической форме. Извлечение корня из комплексного числа в тригонометрической форме. Экспонента комплексного аргумента. Комплексные числа в показательной форме. Логарифм, синус и косинус комплексного аргумента. Операции над матрицами. Определитель. Миноры и алгебраические дополнения. Свойства определителя. Решение систем линейных уравнений по теореме Крамера и с помощью обратной матрицы. Ранг матрицы. Теорема Кронекера-Капели. Метод Гаусса. Элементы векторной алгебры. Прямая и плоскость.

Раздел 2. Предел и непрерывность

Определения пределов функций. Примеры. Определение б.м. Бесконечно большие. Замечательные пределы. Сравнение б.м. Таблица б.м. Свойства предела. Свойства непрерывных функций. Теоремы Вейерштрасса и Больцано - Коши. Односторонние пределы. Разрывы и их классификация.

Раздел 3. Дифференциальное исчисление

Производная функции. Касательная. Производная суммы, произведения и частного. Производная сложной функции. Производная обратной функции. Логарифмическая производная. Таблица производных. Производная степенно-показательной функции. Теоремы Роля, Лагранжа и Коши. Правило Лопиталя. Экстремумы функции одной переменной. Выпуклость функции. Асимптоты. Функции многих переменных. Частные производные. Полный дифференциал. Дифференцирование сложной функции многих переменных. Дифференцирование функции, заданной неявно. Производная по направлению. Градиент. Экстремумы функций многих переменных.

Раздел 4. Интегральное исчисление

Дифференциал функции. Первообразная функции. Неопределённый интеграл и его свойства. Таблица интегралов и примеры. Замена переменной в неопределённом интеграле. Интегрирование по частям. Интегрирование рациональных дробей. Определённый интеграл. Определение и свойства. Теорема о среднем. Теорема Барроу. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определённом интеграле. Несобственный интеграл. Применение интеграла (площадь, объём).

Раздел 5. Криволинейные интегралы первого и второго типов.

Криволинейные интегралы первого типа. Криволинейные интегралы второго типа. <u>Раздел 6. Двойной интеграл.</u>

Двойной и повторный интегралы. Двойной интеграл в полярных координатах. Формула Грина. Условие независимости криволинейного интеграла от пути интегрирования; потенциальная функция. Формула Грина. Условие независимости криволинейного интеграла от пути интегрирования; потенциальная функция.

Раздел 7. Дифференциальные уравнения.

Понятие дифференциального уравнения. Задача Коши, теорема существования и единственности, общее решение, общий интеграл. Уравнения с разделяющимися переменными. Линейные уравнения первого порядка. Уравнение Бернулли. Уравнения в полных дифференциалах. Уравнения порядка выше первого. Уравнения, допускающие понижение порядка. Линейные уравнения второго порядка; теоремы об определителе Вронского, общие решения однородного и неоднородного уравнений. Метод вариации

постоянных. Решение линейных однородных уравнений второго порядка с постоянными коэффициентами. Решение линейных уравнений второго порядка с постоянными коэффициентами и специальной правой частью.

Раздел 8. Преобразование Лапласа.

Преобразование Лапласа. Изображения единицы, синуса и косинуса. Теоремы смещения, запаздывания, подобия, дифференцирования оригинала и изображения. Таблица оригиналов и изображений. Решение дифференциальных уравнений методом преобразования Лапласа. Теоремы о свёртке и об интегрировании оригинала. Формула Дюамеля. Решение интегральных уравнений методом преобразования Лапласа. Раздел 9. Числовые и степенные ряды.

Числовой ряд и его сумма. Необходимый признак сходимости ряда и следствие из него. Теоремы сравнения. Признак Даламбера, радикальный и интегральный признаки Коши.. Знакопеременные ряды, абсолютная и условная сходимости. Признак Лейбница для знакочередующихся рядов. Функциональные ряды. Степенные ряды; теорема Абеля. Почленное дифференцирование и интегрирование функциональных и степенных рядов. Ряды Тейлора и Маклорена. Приближённые вычисления с помощью рядов.

Раздел 10. Ряды Фурье и интеграл Фурье

Ортонормированная система функций. Тригонометрический ряд. Теорема Дирихле о разложении периодической функции в ряд Фурье. Ряды Фурье для чётной и нечётной функций. Ряд Фурье в амплитудно-фазовой форме. Ряд Фурье в комплексной форме. Неравенство Бесселя и равенство Парсеваля. Интеграл Фурье в вещественной и комплексной формах.

Общая трудоемкость дисциплины

432 час(ов), 12 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.0.10 Организация и управление предприятиями

Цели освоения дисциплины

Целью преподавания дисциплины «Организация и управление предприятиями» является:

изучение теоретических основ и получение практических навыков в области организации и управления предприятиями (организациями), приобретение студентами комплексных знаний о принципах и закономерностях функционирования организации как хозяйственной системы, о методах управления деятельностью и ресурсами организации в целях повышения ее эффективности.

Место дисциплины в структуре ОП

Дисциплина «Организация и управление предприятиями» Б1.О.10 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Организация и управление предприятиями» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений (УК-2)
- Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде (УК-3)
- Способен принимать обоснованные экономические решения в различных областях жизнедеятельности (УК-9)

Содержание дисциплины

Раздел 1. Сущность и содержание организации и управления предприятием Понятие «управление». Взаимосвязь понятий «управление» и «менеджмент». Управление как функция и процесс. Виды управленческой деятельности. Основные функции управления. Управление как искусство. Управление как наука. Управление организацией как аппарат управления.

Раздел 2. Теоретические основы управления

Эволюция управленческой мысли в XX веке. Школа научного управления. Принципы научного менеджмента Ф.У. Тейлора. Классическая (административная) школа. Научные принципы управления А.Файоля. Школа человеческих отношений и поведенческих наук. Взгляды на управление в рамках «замкнутой» системы. Эволюция теоретических основ управления во второй половине XX века. Теории принятия решений и количественного подхода. Ситуационный подход к управлению. Теория стратегии. Теории инновации и лидерства. Взгляды на управление в рамках «открытой» системы. Формирование новых принципов управления. Децентрализация системы управления. Полицентрическая система хозяйствования. Социально ориентированные системы.

<u>Раздел 3. Содержание и особенности управленческой деятельности. Квалификационные</u> требования к менеджерам

Сущность управления как деятельности. Характерные черты труда менеджеров. Творческий характер управленческого труда. Основное содержание труда менеджеров. Состав функций управления. Требования, предъявляемые к профессиональной компетенции менеджерам. Особенности труда менеджеров. Роль менеджеров в организации. Модель современного менеджера. Разделение труда в управлении. Общие (линейные) и функциональные менеджеры. Структурное разделение труда в управлении. Вертикальное разделение труда. Уровни управления. Целевые ориентиры менеджеров верхнего уровня. Основные функции менеджеров среднего уровня. Полномочия и

функции менеджеров первого уровня. Горизонтальное разделение труда. Категории управленческих работников. Кооперация труда в управлении. Механизмы кооперации труда в управлении. Командная работа в управлении. Сущность понятий «группа» и «команда». Типы групп в организации. Преимущества групповых форм организации труда. Эффективность групповой работы.

Раздел 4. Основные понятия процесса управления

Сущность процесса управления. Схема процесса принятия управленческих решений. Составные части процесса принятия управленческих решений. Понятия «проблема» и «возможность». Правила формулирования проблем. Сущность проблемной ситуации. Участники процесса принятия решений. Субъекты решения. Преимущества и недостатки индивидуальных решений. Преимущества и недостатки группового принятия решений. Виды решений в зависимости от степени участия персонала организации. Понятие «управленческое решение». Требования, предъявляемые к управленческим решениям. Факторы, оказывающие влияние на управленческие решения. Классификация управленческих решений. Программируемые и непрограммируемые решения. Раздел 5. Базовые концепции и методики принятия управленческих решений Базовые концепции процесса принятия решений. Интуитивный подход к принятию решений. Рациональная модель процесса принятия решений. Этапы процесса принятия решений в классической модели. Цели и критерии оценки действий. Критерииограничения и критерии-оптимизации. Ограничения в использовании рациональной модели принятия решений. Альтернативные модели процесса принятия решений. Модель ограниченной рациональности. Удовлетворительное решение. Ретроспективная модель. Методы управления. Общенаучные методы управления. Системный подход. Комплексный подход. Моделирование. Экономико-математические методы. Экспериментирование. Конкретно-исторический подход. Методы социологических исследований. Методы управления функциональными подсистемами организации. Методы выполнения общих функций управления. Методы решения проблем. Причинно-следственная диаграмма. Метод номинальной групповой техники. Дельфийский метод. Метод мозговой атаки. Метод дерева решений.

Раздел 6. Планирование и стратегия управления предприятием

Сущность планирования в организации. Планирование как процесс управления. Система планов организации. Виды планов организации по длительности планового периода. Современные подходы к стратегическому планированию и его роли. Виды планов по уровням организационного планирования. Цели организации. Сущность категории «миссия» организации. Правила формулирования миссии. Понятие «стратегическое видение». Определение понятия «цели» организации. Требования, учитываемые при разработке целей. Критерии классификации и группировки целей. Дерево целей организации. Принципы построения дерева целей. Система управления по целям. Принципы системы управления по целям. Этапы процесса управления по целям. Концепция управления по результатам. Преимущества и недостатки системы управления по целям. Стратегия организации. Определение понятия стратегии. Этапы и элементы модели стратегического управления. Аналитическая работа при выборе и обосновании стратегии организации. SWOT-анализ и матрица БКГ. Инструменты реализации стратегических планов.

Раздел 7. Структура управления предприятия

Структура управления как часть организационной структуры. Взаимосвязь между организационной структурой и структурой управления организацией. Основные понятия структуры управления. Сущность понятий «полномочия», «ответственность», «делегирование» и «власть». Основные характеристики структуры управления. Принципы

построения структур управления. Типовые подходы к построению структур управления. Формирование иерархических структур управления. Концепция бюрократической структуры управления. Формирование органических структур управления. Требования, предъявляемые к организационным структурам управления. Методы управления. Организационно-распорядительные методы. Экономические методы. Правовые методы. Социально-психологические методы. Стили управления. Виды структур управления организацией организацией. Факторы, влияющие на выбор виды структуры управления организацией. Ситуационные факторы выбора. Разделение работ по управлению. Уровень централизации и децентрализации. Механизмы координации. Виды структур управления. Линейнофункциональная структура управления. Проектная структура управления. Матричная структура управления.

Раздел 8. Функции мотивации в управлении предприятием

Сущность понятия «мотивация». Определение мотивации как процесса. Этапы процесса мотивации. Основные теории мотивации. Мотивация по потребностям. Пирамида потребностей. Теория мотивации через иерархию потребностей А.Маслоу. Теория трех потребностей. Двухфакторная теория мотивации. Гигиенические факторы. Факторы мотивации. Процессуальные теории мотивации. Теория ожиданий. Теория справедливости. Комплексная процессуальная теория мотивации. Основные методы мотивации. Принуждение как метод мотивации. Сущность вознаграждения как метода мотивации. Солидарность как метод мотивации. Метод мотивации приспособление. Система непрерывного обучения как фактор мотивации. Пирамида развития навыков менеджера. Современные подходы к обучению менеджеров. Дифференциация обучения менеджеров.

Раздел 9. Функции контроля на предприятии

Сущность контроля как управленческой деятельности. Контроль как функция процесса управления. Факторы, определяющие эффективность контроля. Этапы процесса контроля. Виды контроля в организации. Стратегический, тактический и оперативный контроль. Предварительный, текущий и заключительный контроль. Классификация контроля по функциональным подсистемам. Основные методы контроля в организации. Общие методы контроля. Бенчмаркинг как метод контроля в организации. Тотальный контроль качества и тотальный менеджмент качества.

Раздел 10. Сущность, методы оценки и измерения эффективности управления Сущность «эффекта» и «Эффективности». Понятие «эффективность управления». Необходимость оценки эффективности управления. Показатели изменения эффективности управления. Оценка эффективности организаций закрытого типа. Показатели экономической эффективности. Измерение эффективности на основании оценки качества трудовой жизни. Оценка эффективности организаций открытого типа. Эффективное управление организациями. Задачи менеджеров по эффективному оперативному функционированию организаций. Задачи менеджеров по эффективному стратегическому развитию организаций.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.11 Схемотехника

Цели освоения дисциплины

Целью преподавания дисциплины «Схемотехника» является: изучение и освоение методов реализации современных схемотехнических решений и особенностей построения схем аналоговых и аналого-цифровых электронных устройств, осуществляющих усиление, преобразование и фильтрацию сигналов.

Место дисциплины в структуре ОП

Дисциплина «Схемотехника» Б1.О.11 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Теоретические основы электротехники»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)

Содержание дисциплины

<u>Раздел 1. Основные технические показатели и характеристики усилительных устройств,</u> обеспечение линейного режима их работы

Назначение и классификация аналоговых устройств усиления и преобразования сигналов. Процесс усиления, структурная схема усилителя, эквивалентные схемы источников сигнала и нагрузки. Описание в частотной и временной областях. Коэффициент передачи по напряжению, току, мощности. Входное и выходное сопротивления активного четырехполюсника. Коэффициент нелинейных искажений. АЧХ и ФЧХ коэффициента усиления. Переходная характеристика усилителя и ее искажения.

Раздел 2. Эквивалентные схемы и усиление сигнала

Идеальные активные четырехполюсники. Зависимые источники как модели транзисторов и операционных усилителей. Схемотехническая реализация зависимых источников. Схемы включения, замещения, эквивалентные параметры и матрицы биполярных и полевых транзисторов. Частотные и временные характеристики усилителей, их взаимосвязь. Схема замещения транзисторного каскада с общим эмиттером, общим

коллектором, общей базой. Схемы замещения каскадов на полевых транзисторах. Влияние паразитных емкостей на частотные характеристики усиления. Эффект Миллера. Многокаскадные схемы усилителей на биполярных и полевых транзисторах. Коррекция частотных характеристик.

Раздел 3. Обратная связь в электронных устройствах

Определение, виды обратной связи, структурная схема усилителя с ОС. Количественная оценка ОС. Петлевое усиление. Частотные характеристики петлевого усиления. Понятие устойчивости усилителя с ОС. Критерий Найквиста. Диаграммы Боде. Запасы устойчивости. Максимальная ООС. Влияние ОС на внешние и внутренние шумы и нелинейные искажения. Частотные характеристики усилителя с ОС. Определение входного и выходного сопротивлений усилителя с ОС. Стабилизация рабочей точки с помощью отрицательной обратной связи. Эмиттерная и коллекторная стабилизация.

Раздел 4. Функциональные узлы на базе интегральных схем

Назначение, свойства и структура интегрального операционного усилителя.

Принципиальная схема ОУ. Входной дифференциальный каскад. Каскодная схема. Токовое зеркало. Упрощенная эквивалентная схема замещения операционного усилителя. Коррекция частотных характеристик, влияние ООС. Интегратор, дифференциатор, сумматор. Компаратор на базе ОУ. Нелинейные элементы в цепи ООС ОУ. Прецизионный выпрямитель, пиковый детектор сигналов, схема выборки-хранения. Логарифмический и экспоненциальный усилитель. Перемножитель сигналов. Схема выборки-хранения и аналого-цифрового преобразования. Расчет схем на ОУ в диапазоне низких частот.

Общая трудоемкость дисциплины

Частотные характеристики ОУ.

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет. Курсовой проект

Б1.0.12 Метрология, стандартизация и сертификация

Цели освоения дисциплины

Целью преподавания дисциплины «Метрология, стандартизация и сертификация» является:

обеспечение требований Государственного Образовательного стандарта к уровню подготовки бакалавров в области метрологии, стандартизации и сертификации. Дисциплина «Метрология, стандартизация и сертификация» должна способствовать расширению общего технического кругозора студентов, развитию их творческих способностей, умению творчески применять и самостоятельно повышать свои знания.

Место дисциплины в структуре ОП

Дисциплина «Метрология, стандартизация и сертификация» Б1.О.17 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи».

Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как .

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)

Содержание дисциплины

Раздел 1. Введение в дисциплину.

Введение в дисциплину. Определение терминов: метрология, техническое регулирование, стандартизация, подтверждение соответствия, сертификация. Значение этих областей знания при разработке, производстве и эксплуатации телекоммуникационного оборудования и средств измерений.

Раздел 2. Основы метрологии и теории погрешностей.

Основные термины и определения в области метрологии. Государственная система обеспечения единства измерений. Система единиц величин СИ. Размерности единиц. Виды средств измерений. Эталоны и рабочие средства измерений. Классификация методов и средств измерений. Классификация погрешностей. Систематические погрешности. Случайные погрешности, доверительная вероятность и доверительный интервал. Результат измерения и его погрешность. Погрешности косвенных измерений. Суммирование погрешностей. Нормируемые метрологические характеристики средств измерений. Классы точности средств измерений. Правила представления результатов измерений. Понятие неопределенности результата измерений.

<u>Раздел 3. Измерительные преобразователи переменного напряжения и тока.</u> Измерительные преобразователи переменного напряжения и тока. Вольтметры. <u>Раздел 4. Аналоговые и цифровые осциллографы.</u>

Наблюдение, измерение и исследование формы электрических сигналов. Классификация осциллографов. Аналоговые осциллографы, типовая структурная схема, метрологические характеристики. Генераторы линейной развертки (непрерывной, ждущей, задержанной). Режим внешней развертки. Осциллографические измерения. Цифровые осциллографы, структурная схема, принципы работы, метрологические характеристики, преимущества по сравнению с аналоговыми осциллографами.

Раздел 5. Цифровые измерения частоты, периода, интервалов времени.

Методы цифровых измерений частотновременных параметров сигналов: частоты, периода, интервалов времени, отношения частот. Структурные схемы электронносчетных частотомеров. Опорные генераторы. Источники погрешностей и их нормирование. Раздел 6. Основные принципы технического регулирования. Отечественная,

международная и межгосударственная стандартизация.

Правовые основы технического регулирования. Основные принципы и теоретическая база стандартизации. Виды стандартов. Отечественная и международная стандартизация в измерениях и технологических процессах. Роль стандартизации в повышении качества, безопасности и конкурентоспособности продукции, в развитии научно-технического и экономического сотрудничества.

Раздел 7. Подтверждение соответствия и сертификация.

Сертификация как форма подтверждения соответствия. Правовые основы, системы, схемы и этапы сертификации. Органы по сертификации и их аккредитация. Сертификация средств измерений, средств связи, радиоэлектронных средств.

<u>Раздел 8. Автоматизация измерений. Информационно-измерительные системы. Контроль</u> условий проведения измерений (температура, давление, влажность).

Информационно-измерительные системы. Автоматизация измерений - основные направления. Стандартизованные интерфейсы измерительных систем. Интерфейс МЭК 625 и его модификации (GPIB, HP-IB, IEEE-488). «Виртуальные» средства измерений.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.0.13 Основы конструирования и технологии производства электронных средств

Цели освоения дисциплины

Целью преподавания дисциплины «Основы конструирования и технологии производства электронных средств» является:

формирование знаний о методах конструирования, компоновки и технологии изготовления электронных средств (ЭС) различного назначения и различных структурных уровней, защиты РЭС от дестабилизирующих факторов с использованием информационных средств при обеспечении заданных показателей качества изделия, требований надёжности, эргономики и дизайна.

Место дисциплины в структуре ОП

Дисциплина «Основы конструирования и технологии производства электронных средств» Б1.О.13 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Высшая математика»; «Инженерная и компьютерная графика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)

Содержание дисциплины

Раздел 1. Введение.

Жизненный цикл изделия. Роль конструирования и технологии изготовления. Эволюция конструкции ЭС. Основные задачи при проектировании конструкции электронных средств.

Раздел 2. Классификация современных электронных средств

Классификацич ЭС по назначению, тактике использования и объекту установки.

Категории, классы, группы. Климатическое исполнение электронных средств

Раздел 3. Стандартизация при проектировании электронных средств

Уровни стандартов. Системы стандартов. Основные положения ЕСКД, ЕСТД, ЕСТПП.

Понятия унификации, типизации, стандартизации, параметрических и размерных рядов.

Понятия допусков, посадок, квалитетов и шероховатости.

Раздел 4. Системный подход при проектировании электронных средств. Структура конструкции электронных средств. Модульный принцип конструирования электронных средлетав

Сущность системного подхода при проектировании электронных средств. Обобщенная системная модель конструкции электронных средств. Уровни разукрупнения. Несущие конструкции. Базовые несущие конструкции. Радиоэлектронный модуль.

Конструкционные системы.

Раздел 5. Перспективные методы формообразования несущих конструкций Несущие конструкции из листового материала. Несущие конструкции выполненные литьем. Технологические особенности изготовления несущих конструкций и теребования к конструкциям в зависимости от метода изготовления.

<u>Раздел 6. Электрические соединения в конструкциях электрических средств</u> Основные понятия. Печатный монтаж. Технологический способ создания электрических соединений.

Раздел 7. Защита электронных средств от дестабилизирующих факторов. Оценка качества конструкции.

Обеспечение теплового режима. Защита от механических воздействий.Защита от климатических воздействийСистемные критерии технического уровня и качества электронных средств. Использование информационных технологий при проектировании электронных средств. Эргономика и дизайн конструкций электронных средств

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Б1.О.14 Экология

Цели освоения дисциплины

Целью преподавания дисциплины «Экология» является:

подготовка обучающихся к соблюдению в рамках своей профессиональной деятельности установленных законодательством требований в области экологической безопасности и охраны окружающей среды.

Место дисциплины в структуре ОП

Дисциплина «Экология» Б1.О.03 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Экология» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений (УК-2)
- Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов (УК-8)

Содержание дисциплины

Раздел 1. Теоретические основы экологии

Исходные понятия: природа, окружающая среда, охрана природы, охрана окружающей среды, природопользование. Предмет и задачи экологии как науки и как мировоззрения. Структура современной экологии. Современный этап природопользования и охраны окружающей среды. Принципы, законы и правила функционирования гео- и экосистем. Экологические факторы среды. Понятие экологического фактора. Разнообразие и классификация факторов среды. Законы Либиха и Шелфорда. Понятия лимитирующего фактора и экологической ниши. Адаптация организмов к экологическим факторам. Понятие адаптации. Виды адаптаций организмов к изменениям экологических факторов. Раздел 2. Природные ресурсы и глобальные экологические проблемы

Понятие экологических проблем, подходы к их классификации и методы оценки остроты. Атмосферные, водные, земельные, биологические и комплексные экологические проблемы. Критерии оценки остроты экологических проблем. Подходы к выделению и оценке приоритетности глобальных проблем. Состав и структура глобальных экологических проблем. Демографическая, энергетическая, минерально-сырьевая, продовольственная проблемы.

Раздел 3. Социально-экономические аспекты экологии

Понятие о природных ресурсах. Классификация природных ресурсов. Кадастры природных ресурсов. Нормативы качества окружающей среды. Экологические стандарты. Социально-экологические конфликты. Основные типы социально-экологических конфликтов. Околоэкологический пиар.

Раздел 4. Атмосферный воздух и проблемы его охраны

Состав атмосферного воздуха и функции атмосферы в глобальной геосистеме. Свойства наиболее распространенных веществ, загрязняющих атмосферный воздух. Атмосферный смог и его виды. Проблема глобального потепления. Проблема атмосферного озона. Проблема кислотных дождей. Особенности микроклимата и локальное загрязнение воздуха в городах и промышленных зонах. Административные и экономические механизмы охраны атмосферного воздуха. Нормирование загрязнения атмосферного воздуха. Основные направления охраны атмосферного воздуха. Основные типы пылегазоочистного оборудования и принципы его работы.

Раздел 5. Водные ресурсы и их охрана

Водные ресурсы и их возобновление. Антропогенные изменения элементов гидрологического цикла и их последствия. Источники загрязнения поверхностных и подземных вод. Свойства наиболее распространенных веществ, загрязняющих поверхностные и подземные воды. Эфтрофикация водоемов. Самоочищение. Административные и экономические механизмы охраны водных объектов. Нормирование загрязнения поверхностных и подземных вод. Основные направления охраны вод: совершенствование технологий и снижение водопотребления.

Раздел 6. Землепользование

Землепользование. Юридические и экономические механизмы регулирования. Категории земель. Земельные ресурсы и почвы: соотношение понятий. Место почв в экосистемах. Оборачиваемость почв. Загрязнение и нарушения земель. Рекультивация.

Раздел 7. Обращение с отходами

Законодательные требования к обращению с отходами. Основные виды промышленных отходов и методы их утилизации. Сельскохозяйственные отходы. Твердые коммунальные отходы и способы их утилизации. Электронные отходы, проблемы их утилизации и пути их решения.

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.0.15 Теоретические основы электротехники

Цели освоения дисциплины

Целью преподавания дисциплины «Теоретические основы электротехники» является:

изучение основных понятий, определений и законов, которые широко используются во всех последующих специальных дисциплинах. Изучение «Теоретические основы электротехники» направлено на глубокое понимание и знание аналитических и численных методов, которые описывают процессы в электрических цепях аналоговых систем. Курс «Теоретические основы электротехники» предназначен также для получения знаний по решению практических задач, возникающих в процессе использования совершенного телекоммуникационного оборудования. Дисциплина «Теоретические основы электротехники» является первой дисциплиной, в которой студенты изучают методы анализа устройств электро- и радиосвязи. Она находится на стыке дисциплин, обеспечивающих базовую и специальную подготовку студентов. Дисциплина «Теоретические основы электротехники» обеспечивает формирование фундамента подготовки будущих специалистов и создает необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Теоретические основы электротехники» Б1.О.11 является одной из дисциплин обязательная часть учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Высшая математика»; «Информатика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)

Содержание дисциплины

Раздел 1. Основные понятия, определения и законы теории электрических цепей.

Электрическая цепь (ЭЦ), электрический ток, электрическое напряжение, энергия, мощность. Линейные и нелинейные электрические цепи. Принцип суперпозиции. Модель и схемы ЭЦ. Активные и пассивные элементы ЭЦ. Законы Кирхгофа. Последовательное и параллельное соединение элементов ЭЦ.

Раздел 2. Анализ линейных резистивных ЭЦ.

Методы анализа ЭЦ: метод эквивалентных преобразований, метод наложения, метод токов ветвей, метод узловых напряжений.

Раздел З. Анализ гармонических колебаний в ЭЦ.

Режим установившихся гармонических колебаний в ЭЦ. Мгновенная и средняя мощность, гармонические колебания в элементах ЭЦ. Символический метод анализа установившихся гармонических колебаний в ЭЦ. Комплексные сопротивления и проводимости пассивных элементов ЭЦ. Законы Ома и Кирхгофа в комплексной форме. Комплексная, средняя и реактивная мощности. Баланс мощностей.

Раздел 4. Частотные характеристики ЭЦ.

Комплексные передаточные функции ЭЦ. Амплитудно-частотные и фазо-частотные характеристики. Резонанс напряжений в последовательном колебательном контуре.

Раздел 5. Классический метод анализа переходных колебаний.

Установившиеся и переходные колебания в ЭЦ. Законы коммутации. Начальные условия. Переходные и свободные колебания в цепи с одним реактивным элементом. Переходные колебания в последовательном колебательном контуре.

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.16 Правоведение

Цели освоения дисциплины

Целью преподавания дисциплины «Правоведение» является:

формирование базовых знаний (представлений) о государстве и праве как особом порядке отношений в обществе, а также об особенностях основных отраслей российского права.

Место дисциплины в структуре ОП

Дисциплина «Правоведение» Б1.О.04 является базовой дисциплиной цикла учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Правоведение» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений (УК-2)
- Способен формировать нетерпимое отношение к проявлениям экстремизма, терроризма, коррупционному поведению и противодействовать им в профессиональной деятельности (УК-10)

Содержание дисциплины

Раздел 1. Основы теории государства и права

Понятие права. Понятие государства. Концепции происхождения государства и права.

Норма права. Нормативно-правовые акты.

Раздел 2. Отрасли права в РФ

Конституционное право. Гражданское право. Трудовое право. Семейное право.

Информационное право.

Раздел 3. Информационное право

Структура и содержание информационного права

Раздел 4. Эволюция системы права

Этапы эволюции системы права

Раздел 5. Иноформационное право

Основы информационного права

Раздел 6. Эволюция системы права

Направления развития системы права

Раздел 7. Тенденции права

Тенденции права в России

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.0.17 Материалы электронной техники

Цели освоения дисциплины

Целью преподавания дисциплины «Материалы электронной техники» является:

Изучение строения и свойств материалов, наиболее применяемых в

радиотехнике, электронике и смежных областях, формирование умений правильного выбора материальной базы для достижения поставленных целей.

Место дисциплины в структуре ОП

Дисциплина «Материалы электронной техники» Б1.О.17 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Высшая математика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)

Содержание дисциплины

Раздел 1. Введение. Назначение, классификация, строение материалов. Зависимость строения и свойств материалов.

Предмет дисциплины и ее задачи. Роль материалов в развитии элементарной базы электроники. Общие сведения о строении твердых тел. Химическая связь и внутреннее строение, их влияние на свойства материалов. Основные представления о зонной теории твердых тел. Классификация материалов электронной техники.

Раздел 2. Проводниковые материалы

Природа электропроводности материалов. Классификация проводниковых материалов. Структура металлов и сплавов. Влияние примесей на электрические и эксплуатационные свойства. Зависимость удельного сопротивления от температуры. Сверхпроводимость. Зависимость свойств проводников от размерных параметров. Контактная разность потенциалов, термо-ЭДС и термопары.

Раздел 3. Полупроводниковые материалы

Особенности строения полупроводниковых материалов. Собственные и примесные полупроводники. Температурная зависимость проводимости полупроводников. Эффект Холла в полупроводниковых материалах. Изменение свойств полупроводниковых материалов в сильном электрическом поле. Основные полупроводниковые материалы: их особенности, области применения, способы получения.

Раздел 4. Электроизоляционные материалы

Понятие поляризации. Виды поляризации диэлектриков. Основные характеристики

диэлектриков (электропроводность, диэлектрические потери, пробой). Классификация диэлектрических материалов. Методы исследования диэлектриков и определения их параметров.

Раздел 5. Магнитные материалы

Классификация веществ по взаимодействию с магнитным полем. Природа магнетизма природных и искусственных материалов. Намагничивание. Магнитомягкие и магнитотвердые материалы. Применение магнитных материалов.

<u>Раздел 6. Новейшие направления и тенденции развития электротехнического материаловедения.</u>

Возможности перехода от микро- к наноэлектронике. Основные положения молекулярной электроники.

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.18 Социология

Цели освоения дисциплины

Целью преподавания дисциплины «Социология» является:

Воспитание ответственных членов общества, понимающих свое место в социальной системе, способных благоустраивать социальную, экономическую, политическую, культурную среду и сознательно решать задачи общественно-исторического значения.

Место дисциплины в структуре ОП

Дисциплина «Социология» Б1.О.18 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Правоведение»; «Философия».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде (УК-3)
- Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах (УК-5)
- Способен формировать нетерпимое отношение к проявлениям экстремизма, терроризма, коррупционному поведению и противодействовать им в профессиональной деятельности (УК-10)

Содержание дисциплины

Раздел 1. Актуальность, предмет, метод изучения социологии.

Место социологии в системе наук. Предмет социологического исследования: сферы общественной жизни, социальные изменения. Методы социологического исследования: наблюдение, опрос, эксперимент, архивные изыскания, контент-анализ, фокус-группы. Раздел 2. История социологии.

Основоположения социологии О.Конта. Формационный подход К.Маркса и Ф.Энгельса. Эволюционизм Г.Спенсера. Э. Дюркгейм о солидарности, экономике и моральном сознании. М. Вебер о рационализации культуры. Теории постиндустриального общества (Д.Белл, Э.Тоффлер, Ж. Бодрийяр, М.Кастельс). Отечественная социология: П.А. Сорокин, И.С. Кон, В.А. Ядов, современные социологические центры и периодические издания. Раздел З. Социальная стратификация. Элементы социальной структуры.

Социальная стратификация. Параметры неравенства в обществе: экономические, политические, социальные, культурные. Способы измерения стратификации по доходам. Социальный статус. Разновидности статуса. Социальная роль. Ролевой конфликт и ролевая напряженность. Сущность и признаки социальной группы. Социология малых групп. Социальный институт.

<u>Раздел 4. Социология семьи и брака. Демографические тенденции в России и в мире.</u> <u>Здравоохранение.</u>

Семья как социальный институт. Функции семьи. Эволюция семейных форм. Институт брака. Статистика браков и разводов в России. Статистика рождений и смертей в России. Мировая демография. Миграционные процессы в современном мире. Понятие здоровья, институт здравоохранения, эпидемиологический переход.

Раздел 5. Политические и экономические институты общества.

Сущность и функции государства в общественной системе. Бюджет как инструмент государственной политики. Функции политических партий и движений. Роль бюрократии в обеспечении экономических, политических, социальных и культурных процессов. Частная собственность, свободный рынок, деловая репутация.

Раздел 6. Социология культуры.

Взаимосвязь явлений духовной жизни с экономикой, политикой, повседневностью. Эволюция художественных стилей как отражение общественных опасений и ожиданий. Сущность религии, характер и формы современной религиозности. Место науки в современном обществе. Наука академическая, университетская, корпоративная. Образовательный институт как условие социального воспроизводства общества. Раздел 7. Социализация. Нормативно-правовые основы общества. Социальные девиации и социальный контроль.

Сущность социализации, ее задачи и этапы. Роль семьи, школы, СМИ, экономических и политических институтов в процессе социализации личности. Правовая система общества, нравственность, этикет. Преступность, аномия. Формы социального контроля. Профилактика девиантного поведения.

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.0.19 Компоненты электронной техники

Цели освоения дисциплины

Целью преподавания дисциплины «Компоненты электронной техники» является:

ознакомление с назначением, классификацией и основными параметрами и характеристиками компонентов электронной техники, обозначением их в конструкторской документации.

Место дисциплины в структуре ОП

Дисциплина «Компоненты электронной техники» Б1.О.19 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Высшая математика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)

Содержание дисциплины

Раздел 1. Электрические и электронные компоненты

Общие сведения об электронных компонентах

Раздел 2. Пассивные элементы радиоэлектронных устройств

Резисторы и конденсаторы. Катушки индуктивности, дроссели и трансформаторы.

Вспомогательные элементы. Разъемы, соединители и коммутационные устройства.

Раздел 3. Активные элементы радиоэлектронных устройств

Полупроводниковые диоды и транзисторы. Микросхемы. Микроэлектромеханические системы, сенсорные устройства и датчики

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.20 Теоретические основы радиотехники

Цели освоения дисциплины

Целью преподавания дисциплины «Теоретические основы радиотехники» является:

Освоение основ теории детерминированных сигналов, методов анализа линейных и нелинейных цепей, принципов построения и функционирования различных устройств, используемых в составе радиотехнических систем.

Место дисциплины в структуре ОП

Дисциплина «Теоретические основы радиотехники» Б1.О.18 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Теория вероятностей и математическая статистика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)

Содержание дисциплины

Раздел 1. Радиотехнические сигналы и устройства.

Радиотехнические сигналы. Радиотехнические цепи. Радиотехнические системы. Классификация радиотехнических систем. Структурная схема системы передачи информации. Проблемы обеспечения эффективности радиотехнических систем Раздел 2. Свойства детерминированных сигналов

Математические модели сигналов. Математические модели сигналов. Классификация сигналов. Управляющие (модулирующие). Высокочастотные немодулированные сигналы. Модулированные сигналы (радиосигналы). Примеры некоторых сигналов, используемых в радиотехнике. Характеристики сигналов. Геометрические методы в теории сигналов Раздел 3. Спектральный и корреляционный анализ сигналов

Обобщенный ряд Фурье. Система ортогональных функций и ряд Фурье. Свойства обобщенного ряда Фурье. Гармонический спектральный анализ периодических сигналов. Тригонометрическая форма ряда Фурье. Спектры четных и нечетных сигналов. Комплексная форма ряда Фурье. Графическое представление спектра периодического сигнала. Гармонический спектральный анализ непериодических сигналов. Спектральная характеристика непериодических сигналов. Амплитудный и фазовый спектры непериодического сигнала. Спектральная плотность четного и нечетного сигналов. Отличия спектра периодического сигнала от спектра непериодического сигнала. Свойства преобразования Фурье. Определение спектров некоторых сигналов. Спектр колоколообразного (гауссова) импульса. Спектральная плотность - функции. Спектр функции единичного скачка. Спектр постоянного во времени сигнала. Спектр комплексной экспоненты. Спектр гармонического сигнала. Спектральная плотность прямоугольного видеоимпульса. Спектральная плотность произвольного периодического сигнала. Спектральная плотность сигнала вида sin x/x. Корреляционный анализ сигналов. Общие положения. Свойства автокорреляционной функции. Автокорреляционная функция периодического сигнала. Автокорреляционная функция сигналов с дискретной структурой. Взаимокорреляционная функция сигналов. Представление периодического сигнала. Энергетический спектр и автокорреляционная функция сигнала. Дискретизация и восстановление сигналов по теореме отсчетов. Теорема Котельникова. Дискретизация сигнала с конечной длительностью. Спектр дискретизированного сигнала Раздел 4. Общие сведения о радиосигналах

Радиосигналы с амплитудной модуляцией. Амплитудно-модулированные сигналы. Спектральный анализ АМ-сигналов. Векторное представление сигнала с амплитудной модуляцией. Энергетика АМ-сигнала. Балансная амплитудная модуляция. Однополосная модуляция. Радиосигналы с угловой модуляцией. Общие сведения об угловой модуляции. Фазовая модуляция. Частотная модуляция. Спектральный анализ сигналов с угловой модуляцией. Угловая модуляция полигармоническим сигналом. Сравнение амплитудной, фазовой и частотной модуляций. Импульсная модуляция. Виды импульсной модуляции. Спектр колебаний при АИМ. Импульсно-кодовая (цифровая) модуляция. Узкополосные сигналы. Общие сведения об узкополосных сигналах. Аналитический сигнал. Свойства аналитического сигнала

Раздел 5. Линейные радиотехнические цепи и их характеристики

Линейные радиотехнические цепи и их характеристики Общие сведения о линейных цепях. Основные характеристики линейных цепей. Характеристики в частотной области. Временные характеристики. Дифференцирующая и интегрирующая цепи.

Дифференцирующая цепь. Интегрирующая цепь. Фильтр нижних частот. Параллельный колебательный контур. Усилители. Широкополосный усилитель. Резонансный усилитель. Линейные радиотехнические цепи с обратной связью. Частотная характеристика цепи с

обратной связью. Стабилизация коэффициента усиления. Коррекция амплитудночастотной характеристики. Подавление нелинейных искажений. Устойчивость цепей с обратной связью.

Раздел 6. Методы анализа линейных цепей

Постановка задачи. Точные методы анализа линейных цепей. Классический метод. Спектральный метод. Временной метод. Приближенные методы анализа линейных цепей. Приближенный спектральный метод. Метод комплексной огибающей. Метод мгновенной частоты. Прохождение амплитудно-модулированного сигнала через избирательную цепь Раздел 7. Нелинейные радиотехнические цепи и методы их анализа

Свойства и характеристики нелинейных цепей. Способы аппроксимации характеристик нелинейных элементов. Аппроксимация степенным полиномом. Кусочно-линейная аппроксимация. Методы анализа нелинейных цепей. Общее решение задачи анализа нелинейной цепи. Определение спектра тока в нелинейной цепи при степенной аппроксимации характеристики. Гармонический сигнал на входе. Бигармонический сигнал на входе. Определение спектра тока в нелинейной цепи при кусочно-линейной аппроксимации характеристики

Раздел 8. Нелинейные преобразования сигналов

Нелинейное резонансное усиление сигналов. Усиление в линейном режиме. Усиление в нелинейном режиме. Умножение частоты. Амплитудная модуляция. Общие сведения об амплитудной модуляции. Схема и режимы работы амплитудного модулятора. Характеристики амплитудного модулятора. Балансный амплитудный модулятор. Амплитудное детектирование. Общие сведения о детектировании. Амплитудный детектор. Выпрямление колебаний. Общие сведения о выпрямителях. Схемы выпрямителей. Угловая модуляция. Общие принципы получения сигналов с угловой модуляцией. Фазовые модуляторы. Частотные модуляторы. Детектирование сигналов с угловой модуляцией. Общие принципы детектирования сигналов с угловой модуляцией. Фазовые детекторы. Частотные детекторы. Преобразование частоты. Принципы преобразования частоты. Схемы преобразователей частоты

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.О.21 Микропроцессорные устройства

Цели освоения дисциплины

Целью преподавания дисциплины «Микропроцессорные устройства» является:

формирование у студентов профессиональной компетенции в области микропроцессорных устройств, что позволит им проектировать устройства любой степени сложности современными методами.

Место дисциплины в структуре ОП

Дисциплина «Микропроцессорные устройства» Б1.О.19 является одной из дисциплин обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Информатика»; «Компоненты электронной техники».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)

Содержание дисциплины

Раздел 1. Введение

Структура микропроцессорной системы. Назначение блоков системы. Основные элементы для выполнения функций системы. Их структура и основные функции.

Раздел 2. Комбинационные цифровые устройства.

Определение КЦУ. Основные принципы синтеза. Кодопреобразующие КЦУ: дешифратор, шифратор, сумматор. Функциональное назначение, таблицы истинности.

Раздел 3. Комбинационные цифровые устройства.

Коммутирующие КЦУ. Мультиплексор и демультиплексор. Синтез, особенности функционирования, соотношение частот входных и выходных потоков информации. Универсальный коммутатор.

Раздел 4. Последовательностные цифровые устройства.

Определение ПЦУ. Основные структуры ПЦУ. Триггер, как основа построения ПЦУ.

Структура ячейки хранения. Принцип записи информации в синхронный триггер.

Раздел 5. Последовательностные цифровые устройства.

Регистры. Регистры сдвига и регистры хранения информации. Регистры смешанного типа. Примеры применения регистров различных типов. Конечные автоматы, счетчики. Раздел 6. Устройства памяти.

Типы архитектуры микропроцессорных систем. Внутренняя память системы. Адресная память, память с последовательным доступом, ассоциативная память. Структура и функционирование.

Раздел 7. Микропроцессоры.

Типы архитектуры микропроцессоров. Структура RISC-процессора. Основные регистры, их структура и функциональное назначение. Команды прямой и обратной загрузки данных

Раздел 8. Микропроцессоры. Прерывания.

Основные режимы обмена в системе. Прерывания: типы прерываний, основные действия процессора при поступлении кода прерывания. Понятие вектора прерывания. Аппаратные

прерывания, контроллер прерываний.

Раздел 9. Устройства ввода-вывода.

Внутренние параллельные интерфейсы. Структура и функционирование UART. Структура USB, основные типы пакетов и пересылок. Интерфейсы SPI и I2C.

Раздел 10. Программируемые логические интегральные схемы.

Предпосылки создания ПЛИС. Основные типы ПЛИС. CPLD - структура и принцип функционирования. FPGA, эволюция, структура основных блоков схем FPGA последних поколений.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.0.22 Физическая культура и спорт

Цели освоения дисциплины

Целью преподавания дисциплины «Физическая культура и спорт» является: изучение и формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности

Место дисциплины в структуре ОП

Дисциплина «Физическая культура и спорт» Б1.О.05 является дисциплиной обязательной части учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Физическая культура и спорт» основывается на базе знаний, умений и компетенций, полученных студентами в ходе освоения школьных курсов.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с $\Phi\Gamma$ OC:

- Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности (УК-7)

Содержание дисциплины

Раздел 1. Теоретические основы физической культуры.

Физическая культура в профессиональной подготовке студентов и социокультурное развитие личности студента. Социально-биологические основы физической культуры. Основы здорового образа жизни и его отражение в профессиональной деятельности. Общая физическая и спортивная подготовка студентов в системе физического воспитания. Методические основы самостоятельных занятий физическими упражнениями и самоконтроль в процессе занятий. Профессионально-прикладная физическая подготовка будущих специалистов

Раздел 2. Базовый комплекс упражнений по общей физической подготовке.

Комплексы упражнений общей физической подготовки тренировочной направленности: общее оздоровление организма; поддержание спортивной формы на определенном уровне; комплексное развитие физических качеств; комплексная проработка мышечных групп

Раздел 3. Основные разделы физической подготовки.

Физические упражнения из разделов: гимнастика и атлетическая подготовка, ускоренное передвижение и легкая атлетика, спортивные и подвижные игры

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

2. Аннотации рабочих программ дисциплин (модулей) вариативной части

Б1.В.01 Введение в профессию

Цели освоения дисциплины

Целью преподавания дисциплины «Введение в профессию» является: изучение основных принципов построения и развития и применения медиатехнологий в системах и сетях телерадиовещания. Дисциплина «Введение в профессию» должна обеспечивать формирование фундамента подготовки будущих специалистов в области исследования и эксплуатации медиатехнологий, а также, создавать необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана. Она также должна способствовать развитию творческих способностей студентов, умению формулировать и решать задачи изучаемой специальности, умению творчески применять и самостоятельно повышать свои знания.

Место дисциплины в структуре ОП

Дисциплина «Введение в профессию» Б1.В.01 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Введение в профессию» опирается на знании дисциплин(ы).

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1)

Содержание дисциплины

Раздел 1. Профиль «Защищенные системы и сети связи»

Роль и место подготовки бакалавра по профилю «Защищенные системы и сети связи». Структура учебного плана, содержание дисциплин. Приводится анализ потребности в специалистах данного профиля на рынке труда.

Раздел 2. Профиль «Оптические системы и сети связи»

Этапы развития оптической связи, современное состояние волоконно-оптических технологий, компонентная база ВОЛС, перспективы развития волоконно-оптических систем передачи.

Раздел 3. Профиль«Интернет и гетерогенные сети»

Интернет Вещей и его приложения. Тактильный интернет.

Раздел 4. Профиль «Инфокоммуникационные системы и технологии»

Переход от технологий сетей TDM к сетям NGN/IMS. Основы сигнализации, нумерации, технического обслуживания Интеллектуальные сети, системы технического обслуживания и управления, организации интеллектуальных систем.

Инфокоммуникационная сеть интеллектуальная система.

Раздел 5. Профиль «Медиатехнологии в телерадиовещании»

Основные принципы телевидения и их реализация в аналоговых и цифровых телевизионных системах Преимущества цифрового представления аналоговых ТВ сигналов. Перспективы развития и применения медиатехнологий в цифровом телерадиовещании

Раздел 6. Профиль «Системы беспроводных коммуникаций»

Исторический очерк развития и классификация систем мобильной связи (СМС), модель взаимодействия открытых систем OSI применительно к СМС, поколения СМС GSM, UMTS, LTE, системы WiFi, понятие коммутации каналов и пакетов в СМС. Основы построения и функционирования, СМС GSM, UMTS, LTE, основные процедуры, функционирования в СМС GSM, UMTS, LTE. Понятие абонентской емкости в СМС,

понятие бюджета потерь в СМС, использование геоинформационных технологий в задачах планирования СМС GSM, UMTS, LTE.

Раздел 7. Заключение

Перспективы развития отрасли связи и телекоммуникаций

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.02 Дискретная математика

Цели освоения дисциплины

Целью преподавания дисциплины «Дискретная математика» является: формирование общетехнического фундамента подготовки будущих специалистов в области инфокоммуникационных технологий и систем связи, а также, создавать необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Дискретная математика» Б1.В.02 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Дискретная математика» опирается на знании дисциплин(ы).

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Элементы математической логики.

Высказывания. Алгебра Буля. Логические функции. Таблица истинности. Решение логических уравнений. Решение систем логических уравнений. ДНФ, КНФ. Теоремы о представлении логических функций в СДНФ и СКНФ. Сокращённая ДНФ. Карты Карно. Полином Жегалкина. Полнота. Теорема Поста. РКС.

Раздел 2. Элементы теории графов

Основные понятия графов. Описание графов с помощью матриц. Матрицы смежности и достижимости. Структурная матрица. Связность графа. Эйлеровы и Гамильтоновы графы. Сети и потоки. Теорема Форда -Фалкерсона. Деревья.

Раздел 3. Бинарные отношения и мощность множеств.

Бинарные операции. Мощность множества. Бинарные операции.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.03 Физические основы электроники

Цели освоения дисциплины

Целью преподавания дисциплины «Физические основы электроники» является:

формирование фундамента подготовки будущих бакалавров в области элементной базы радиоэлектронной аппаратуры и создание необходимой основы для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Физические основы электроники» Б1.В.03 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Физические основы электроники» опирается на знании дисциплин(ы) «Высшая математика»; «Теоретические основы электротехники»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Электрофизические свойства полупроводников

Собственный и примесные полупроводники. Энергетические диаграммы полупроводников. Равновесные концентрации подвижных носителей заряда в полупроводниках. Электронейтральность однородного полупроводника. Неравновесное состояние полупроводника. Дрейфовый и диффузионный токи. Уравнения непрерывности и диффузии. Дефекты структуры полупроводников. Явления на поверхности полупроводников. Полупроводники с неравномерным распределением примеси.

Раздел 2. Контактные явления

Электрические контакты в полупроводниках. Электронно-дырочный переход. Физические процессы в электронно-дырочном переходе в состоянии равновесия. Основные параметры перехода. Физические процессы в электронно-дырочном переходе при подаче внешнего напряжения. Открытое и закрытое состояние перехода. Вольтамперная характеристика идеализированного перехода. Вольтамперная характеристика реального перехода (полупроводникового диода). Влияние температуры на вольтамперную характеристику перехода. Емкости электронно-дырочного перехода. Математические модели и эквивалентные схемы полу-проводникового диода. Особенности гетероперехода. Выпрямляющий и омический контакты металлполупроводник. Диод Шоттки. Физические процессы в структуре металлдиэлектрикполупроводник. Эффект поля.

Раздел 3. Физические процессы в биполярном транзисторе

Общие сведения о биполярном транзисторе. Взаимодействие близко расположенных переходов. Коэффициенты передачи токов. Активный режим работы биполярного транзистора. Усиление электрических сигналов. Режимы насыщения и отсечки. Электронный ключ на биполярном транзисторе. Нелинейные модели Эберса Молла. Статические характеристики биполярного транзистора. Влияние температуры на работу биполярного транзистора. Пробой биполярного транзистора. Динамический и импульсный режимы работы биполярного транзистора. Дрейфовый и гетеропереходный транзисторы.

Раздел 4. Физические процессы в полевых транзисторах

Общие сведения о полевых транзисторах. Линейный режим работы полевых транзисторов. Режим насыщения полевых транзисторов. Статические характеристики полевых транзисторов. Влияние температуры на работу полевых транзисторов. Математические модели и эквивалентные схемы полевых транзисторов. Динамический и импульсный режимы работы полевых транзисторов. НЕМТ-транзистор. Оптоэлектронные приборы.

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.04 Физика (спецглавы)

Цели освоения дисциплины

Целью преподавания дисциплины «Физика (спецглавы)» является: фундаментальная подготовка студентов по физике, как средство общего когнитивного развития человека, способного к производственно-технологической и проектной деятельности, обеспечивающей модернизацию, внедрение и эксплуатацию различных средств связи и как база для изучения специальных дисциплин; формирование навыков использования основных законов дисциплины к решению задач, связанных с профессиональной деятельностью; формирование у студентов научного мировоззрения, умения анализировать и находить методы решения физических проблем, возникающих в области, связанной с профессиональной деятельностью. Актуальность изучения учебной дисциплины в рамках основной профессиональной образовательной программы обусловлена необходимостью освоения студентами основных законов оптики и квантовой физики, освоение методов решения типичных физических задач, изучения методов проведения и обработки физического эксперимента, что позволяет формировать и развивать универсальные, общепрофессиональные и профессиональные компетенции будущего специалиста.

Место дисциплины в структуре ОП

Дисциплина «Физика (спецглавы)» Б1.В.04 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Физика (спецглавы)» опирается на знании дисциплин(ы) «Высшая математика»; «Теория вероятностей и математическая статистика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)

- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1)

Содержание дисциплины

Раздел 1. Волновая оптика

Элементы фотометрии. Шкала электромагнитных волн. Геометрическая оптика. Интерференция света. Условия максимумов и минимумов. Временная и пространственная когерентность. Интерференционные опыты. Интерференция в тонких пленках. Дифракция света. Дифракция Френеля и Фраунгофера. Дифракционная решетка.Поляризация света. Естественный и поляризованный свет. Закон Малюса. Закон Брюстера. Двойное лучепреломление.

Раздел 2. Квантовая оптика и атомная физика

Законы теплового излучения. Фотоэффект. Квантовая гипотеза и формула Планка. Корпускулярно - волновой дуализм света. Линейчатые спектры. Формула Бальмера. Постулаты Бора. Боровская модель атома водорода и ее недостатки. Гипотеза де Бройля. Волновые свойства микрочастиц. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера. Квантовая частица в одномерной потенциальной яме. Квантовомеханическая модель атома водорода. Квантовые числа и уровни энергии. Правила отбора. Спин.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.05 Электроника

Цели освоения дисциплины

Целью преподавания дисциплины «Электроника» является: подготовка бакалавров в области функционирования элементной базы радиоэлектронной аппаратуры и создание необходимой основы для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Электроника» Б1.В.07 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки

бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Электроника» опирается на знании дисциплин(ы) «Высшая математика»; «Теория электрических цепей»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Конструктивно-технологические основы микроэлектроники.

Основные понятия микроэлектроники. Гибридные интегральные схемы. Тонкопленочные и толстопленочные схемы. Полупроводниковые интегральные схемы. Способы изоляции интегральных элементов. Элементы полупроводниковых интегральных схем. Базовые технологические операции, используемые при создании интегральных схем. Особенности больших интегральных схем.

Раздел 2. Основы схемотехники аналоговых интегральных схем.

Составные транзисторы. Генераторы стабильного тока. Динамическая нагрузка. Схемы сдвига потенциального уровня. Основные каскады аналоговых интегральных схем. Операционные усилители - основа элементной базы аналоговых интегральных схем. Специализированные интегральные схемы, используемые в телекоммуникационной аппаратуре.

Раздел 3. Основы схемотехники цифровых интегральных схем.

Логические операции и логические элементы. Основные параметры цифровых интегральных схем. Диодно-транзисторная и транзисторно-транзисторная логики. Эмиттерно-связанная логика. Интегральная инжекционная логика. Логические элементы на МДП- и МЕП-транзисторах. Триггеры. Запоминающие устройства.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.06 Математические модели в сетях связи

Цели освоения дисциплины

Целью преподавания дисциплины «Математические модели в сетях связи» является:

изучение математического моделирования инфокоммуникационных сетей и систем, подходов к формализации задачи, методов математического описания трафика и процессов обслуживания, способов представления моделей сетей связи; приемов и методов формализации объектов, процессов, явлений, происходящих в сетях связи. Студент должен уметь формализовать процессы, происходящие в инфокоммуникационных системах и сетях; выбирать и анализировать показатели функционирования и критерии их оценки; понимать принципы и методы постановки и решения задач математического моделирования; применять полученные знания при выполнении проектов и выпускных квалификационных работ, а также в ходе научных исследований. В ходе изучения дисциплины студенты усваивают знания о получении концептуальных моделей сетей связи; об основных методах моделирования с использованием положений теории массового обслуживания, методах математической статистики в задачах моделирования трафика, методах теории графов. Дисциплина «Математические модели в сетях связи» рассматривает принципы и методы построения моделей информационных процессов, систем и сетей. В ней изучаются методология и технология моделирования инфокоммуникационных систем и сетей связи, основные положения теории массового обслуживания, принципы моделирования сетей телекоммуникаций как сложных систем. Дисциплина «Математические модели в сетях связи» должна обеспечивать формирование фундамента подготовки будущих бакалавров, а также создавать необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Математические модели в сетях связи» Б1.В.06 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Математические модели в сетях связи» опирается на знании дисциплин(ы) «Дискретная математика»; «Теория вероятностей и математическая статистика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5)

Содержание дисциплины

<u>Раздел 1. Использование математического моделирования при проектировании сетей</u> связи

Подходы к исследованию сложных систем. Классификация моделей. Задачи моделирования при проектировании и эксплуатации сетей связи. Модели сетей связи: Натурные модели; Информационные модели. Формальное описание сети при компьютерном моделировании.

Раздел 2. Модели теории массового обслуживания

Вычислительная сеть как система массового обслуживания: -Трафик - Типы дисциплин обслуживания; - Системы с очередями; - Основные характеристики систем массового обслуживания.

Раздел 3. Простейшие модели систем массового обслуживания

-Системы связи с отказами. Математическая модель системы. -Системы связи с ожиданием. Математическая модель системы.

Раздел 4. Показатели функционирования сети связи

-Выбор показателей функционирования сети связи; -Связь показателей функционирования с качеством предоставления услуг; -Описание показателей качества с помощью математических моделей теории массового обслуживания.

Раздел 5. Модели теории графов

-Построение модели сети на основе теории графов;

Раздел 6. Имитационное моделирование

-Принципы построения имитационной модели сети связи; -Применение математических моделей при построении имитационных моделей; -Системы имитационного моделирования; -Примеры построения имитационных моделей.

Раздел 7. Статистические методы оценка параметров трафика

-Основные параметры трафика; -Методы измерения параметров трафика; - Планирование измерений; -Методы обработки данных

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.07 Основы защиты информации в телекоммуникационных системах

Цели освоения дисциплины

Целью преподавания дисциплины «Основы защиты информации в телекоммуникационных системах» является:

знакомство с основными угрозами и основами защиты информации, ознакомление со стандартами в сфере защиты информации.

Место дисциплины в структуре ОП

Дисциплина «Основы защиты информации в телекоммуникационных системах» Б1.В.07 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Основы защиты информации в телекоммуникационных системах» опирается на знании дисциплин(ы) «Информатика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен оценивать параметры безопасности и защищать программное обеспечение и сетевые устройства администрируемой сети с помощью специальных средств управления безопасностью (ПК-6)
- Способен к администрированию средств обеспечения безопасности удаленного доступа (операционных систем и специализированных протоколов) (ПК-14)

Содержание дисциплины

Раздел 1. Введение

Концепции информационной безопасности. Основные угрозы информации. Основные направления обеспечения информационной безопасности. Классификация средств, инженерно-техническая защита.

Раздел 2. Симметричные криптосистемы

Развитие криптографии. Блочные шифры. Алгоритм DES. Стандарт IEEE 802.11. Угрозы, связанные с использованием беспроводных сетей. Основные системы блочного и потокового шифрования. Основы криптоанализа.

Раздел 3. Ассиметричное шифрование

Основы систем с открытым ключом, алгоритм RSA. Цифровая подпись. Управление ключами. Проверка подлинности.

Раздел 4. Стеганография

Основные термины и определения. Скрытая передача и хранение данных. Типичные примеры стегосистем. Классификация основных методов атак на стегосистемы.

Раздел 5. Технологии аутентификации

Классификация методов идентификации и аутентификации. Электронные ключи. Системы радиочастотной идентификации. Использование магнитных карт и штрих кодов.

Использование биометрической информации. Использование паролей. Сравнение различных технологий.

Раздел 6. СКУД

Элементы СКУД. Классификация идентификаторов. Основные типы видеоисточников информации. Структура цифровой системы видеонаблюдения.

Раздел 7. Безопасность компьютерных систем

Классификация компьютерных систем. Угрозы безопасности информации в компьютерных системах. Несанкционированный доступ к информации. Базовый принцип обеспечения безопасности. Правовое регулирование в области информационной безопасности. Защита информации в сетях от несанкционированного доступа.

Раздел 8. Проблемы безопасности операционных систем

Сетевая операционная система. Политика безопасности. Управление доступом.

Аутентификация и авторизация. Требования, предъявляемые к сетевым операционным системам. Основы информационной безопасности операционных систем (Windows, UNIX).

Раздел 9. Компьютерные вирусы

Классификация компьютерных вирусов. Примеры компьютерных вирусов, признаки заражения. Классификация антивирусов.

Раздел 10. Анализ информационной безопасности сети предприятия

Планирование анализа сетевой безопасности. Многоуровневая защита. Типы анализа безопасности. Сканирование уязвимостей. Противодействие информационной разведке. Противодействие атакам на отказ в обслуживании. Анализ сетевого трафика.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.08 Технологии программирования

Цели освоения дисциплины

Целью преподавания дисциплины «Технологии программирования» является: изучение основных принципов, моделей и методов, используемых на различных этапах разработки программных продуктов.

Место дисциплины в структуре ОП

Дисциплина «Технологии программирования» Б1.В.04 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02

Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Технологии программирования» опирается на знании дисциплин(ы) «Информатика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен осуществлять администрирование сетевых подсистем инфокоммуникационных систем и /или их составляющих (ПК-12)

Содержание дисциплины

Раздел 1. Введение в технологии программирования

Этапы разработки программного обеспечения (ПО). Водопадная и эволюционная модели разработки ПО. Инструментальные средства разработки, языки программирования и их классификация, инструментальные среды, отладчики, редакторы текстов.

Конфигурационное управление ПО, системы управления версиями.

Раздел 2. Основы программирования на С и С++

Структура программы на языках С и С++, этапы подготовки исполняемого кода, препроцессор, ввод/вывод, простые типы данных и операции над ними, реализация разветвляющихся и циклических алгоритмов. Указатели, массивы, нуль-терминированные строки и их обработка, структуры, функции.

Раздел 3. Основы объектно-ориентированного программирования

Объекты, абстрагирование. Класс, свойства, методы, инкапсуляция, наследование, полиморфизм. Класс в С++, конструкторы, деструкторы. Модульный метод программирования, модуль в С++. Принцип повторного использования кода. Объектноориентированные библиотеки.

Раздел 4. Основы управления данными

Основные понятия теории баз данных. Модели данных. Реляционные базы данных: термины, конструирование баз данных. Примеры реляционных СУБД. СУБД SQLite. Язык SQL: основные команды, примеры запросов на выборку. Структура приложения, использующего базу данных. Средства организации работы приложения с базой данных.

Раздел 5. Основы конструирования программных систем

Сбор и анализ требований к ПО. Спецификация требований. Техническое задание на разработку ПО. Язык UML, диаграмма Use Case, компонентов, классов, деятельности, развертывания. Проектирование программного обеспечения, типовые структуры ПО, модели управления ПО. Тестирование, принципы белого и черного ящика, этапы тестирования. Документирование ПО.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.09 Теория электрических цепей

Цели освоения дисциплины

Целью преподавания дисциплины «Теория электрических цепей» является: изучение основных понятий, определений и законов, которые широко используются во всех последующих специальных дисциплинах. Изучение ТЭЦ направлено на глубокое понимание и знание аналитических и численных методов, которые описывают процессы в электрических цепях аналоговых систем. Курс ТЭЦ

предназначен также для получения знаний по решению практических задач, возникающих в процессе использования совершенного телекоммуникационного оборудования. Дисциплина ТЭЦ является одной из первых дисциплин, в которой студенты

изучают методы анализа устройств электро - и радиосвязи. Она находится на стыке

дисциплин, обеспечивающих базовую и специальную подготовку студентов. Дисциплина ТЭЦ обеспечивает формирование фундамента подготовки будущих специалистов и создает необходимую базу для успешного овладения последующими

специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Теория электрических цепей» Б1.В.05 является дисциплиной часть, формируемая участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Теория электрических цепей» опирается на знании дисциплин(ы) «Высшая математика»; «Информатика»; «Теоретические основы электротехники»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)

- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Операторный метод анализа колебаний в ЭЦ

Применение одностороннего преобразования Лапласа для анализа переходных колебаний в ЛЭЦ. Законы Ома и Кирхгофа для изображений колебаний. Схемы замещения реактивных элементов при нулевых и ненулевых начальных условиях. Алгоритм анализа переходных колебаний в ЛЭЦ операторным методом. Операторные передаточные функции устойчивых цепей и их свойства. Характеристическое уравнение. Нули и полюсы. Полином Гурвица и его свойства. Критерии устойчивости Гурвица и Михайлова Раздел 2. Временные характеристики ЭЦ

Ступенчатое воздействие. Функция Хевисайда. Переходная характеристика ЭЦ, ее связь с операторной передаточной функцией. Интеграл Дюамеля. Импульсное воздействие. Единичная импульсная функция (функция Дирака). Импульсная характеристика ЭЦ, ее связь с операторной передаточной функцией. Интеграл наложения

Раздел 3. Спектральные представления колебаний в ЭЦ

Анализ спектрального состава периодических негармонических колебаний с помощью ряда Фурье. Спектр амплитуд и спектр фаз периодического колебания. Анализ режима периодического колебания в ЭЦ. Мощность периодического негармонического колебания. Представление непериодического колебания интегралом Фурье. Комплексная спектральная плотность. Одностороннее преобразование Фурье. Частотный метод анализа переходных колебаний в цепях. Условия безыскаженной передачи сигналов через ЭЦ Раздел 4. Аналоговые электрические фильтры.

Электрические фильтры. Определение, режимы нагрузок, классификация. Задача классического синтеза цепей, задачи аппроксимации и реализации. Методы аппроксимации по Тейлору, по Чебышеву. Полиномиальные фильтры нижних частот с характеристиками Баттерворта и с характеристиками Чебышева. Ослабление, порядок фильтра, передаточные функции. Реализация передаточной функции методом уравнивания коэффициентов. Реализация лестничных LC- фильтров нижних частот. Применение реактансного преобразования частоты для расчета ФВЧ, ПФ и РФ. Принцип каскадно- развязанной реализации ARC-фильтров.

Раздел 5. Цепи с распределенными параметрами.

Однородные длинные линии, первичные параметры. Телеграфные уравнения линии. Падающие и отраженные волны в длинных линиях, вторичные параметры. Распределение комплексных напряжений и токов в линии. Коэффициент отражения, входное сопротивление. Линии с пренебрежимо малыми потерями. Режим бегущих волн, режим стоячих волн, режим смешанных волн в линии без потерь.

Раздел 6. Нелинейные резистивные цепи

Вольт- амперные характеристики типовых нелинейных двухполюсных элементов. Аппроксимация ВАХ нелинейного резистивного двухполюсника степенным полиномом, отрезками прямых линей, экспоненциальными функциями. Анализ резистивной цепи с одним нелинейным двухполюсником в режиме постоянного тока. Нахождение рабочей точки по однозначной и многозначной ВАХ. Статические и дифференциальные параметры. Анализ нелинейной ЭЦ при гармоническом воздействии. Режим малых и больших колебаний. Спектры реакций нелинейного резистивного элемента при

полиномиальной и линейно- ломаной ВАХ. Коэффициент нелинейности

Общая трудоемкость дисциплины

180 час(ов), 5 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.10 Теория электрической связи

Цели освоения дисциплины

Целью преподавания дисциплины «Теория электрической связи» является: Целью преподавания дисциплины «Теория электрической связи» является изложение основных закономерностей обмена информацией на расстоянии, обработки, эффективной передачи и помехоустойчивого приёма в технических и естественных системах различного назначения и формирования фундаментальных знаний основ теории детерминированных и случайных аналоговых и цифровых сигналов и систем их преобразования, основ построения современных систем формирования, обработки и передачи сигналов, методов аналоговой и цифровой модуляции сигналов для каналов с помехами в том числе оптических, принципов и методов многоканальной передачи, хранения, распределения и приема дискретных и непрерывных сообщений, методов повышения энергетической и спектральной эффективности систем инфотелекоммуникаций базирующихся на фундаментальной теории временного, спектрального и корреляционного анализа сигналов, в том числе в оптическом диапазоне, способствовать развитию творческих способностей студентов, умению формулировать и решать задачи оптимизации систем связи, умению творчески применять и самостоятельно повышать свои знания в области инфотелекоммуникаций, фотоники и оптоинформатики.

Место дисциплины в структуре ОП

Дисциплина «Теория электрической связи» Б1.В.11 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Теория электрической связи» опирается на знании дисциплин(ы) «Высшая математика»; «Дискретная математика»; «Теоретические основы электротехники»; «Физические основы электроники».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Общие сведения о системах электросвязи

Понятие информации, сообщения, сигнала. Модель системы передачи информации. Классификация сигналов в каналах связи. Исторические даты в истории связи и телекоммуникаций. ASCII (American Standard Code for Information Interchange). Телеграфный трёхрегистровый код МТК-2. Методы системного анализа телекоммуникаций. Временной и частотный анализ. Вероятностные подходы в построении и оптимизации систем связи. Статистическая теория обнаружения сигналов и оценки их параметров. Теория информации и кодирования. Сообщение и сигналы Радиотехнические цепи и сигналы: аналоговые, квантованые, дискретные, цифровые. Модель процесса коммуникации. Эталонная модель взаимодействия открытых систем (OpenSystemInterconnect - OSI). Основные преобразования информационных сигналов в цифровой связи. Форматирование: знаковое кодирование, дискретизация, квантование, ИКМ. Передача видеосигналов: NRZ, самосинхронизирующиеся форматы, фазовое кодирование, структура системы передачи информации, Классификация каналов передачи информации.

Раздел 2. Спектры периодических и непериодических сигналов. Преобразование Фурье Векторные модели сигналов. Обобщенный ряд Фурье. Векторное представление сигнала. Понятие базиса, нормы, скалярного произведения сигналов, ортогональности сигналов, ортонормированного базиса сигналов. Алгебраическая структура пространства сигналов. Геометрическая структура пространства сигналов. Норма сигнала. Энергия сигнала. Метрика пространства сигналов. Скалярное произведение сигналов. Базисные сигналы. Обобщенный ряд ФурьеСпектры периодических сигналов. Формы спектрального представления периодического сигнала. Спектры периодических сигналов линейчатые и дискретные. Спектры непериодических сигналов. Модель непериодического сигнала как предельного случая периодического сигнала, когда период повторения стремится к бесконечности. Физический смысл спектральной плотности сигнала. Математический и физический спектр непериодического сигнала. Прямое и обратное преобразование Фурье. Свойства преобразования Фурье.

<u>Раздел 3. Спектрально-корреляционный анализ детерминированных сигналов в инфотелекоммуникации.</u>

Аналитический сигнал. Квадратурный и сопряженный сигналы. Преобразование Гильберта. Спектральная плотность аналитического сигнала. Преобразование Гильберта во временной области. Преобразование Гильберта во частотной области. Преобразование Гильберта для гармонических сигналов. Понятие узкополосного сигнала. Формирование комплексной огибающей полосового сигнала. Распределение энергии в спектре

непериодического сигнала. Равенство Парсеваля и обобщенная формула Рэлея. Энергетический спектр сигнала. Распределение энергии в спектре вещественного непериодического сигнала. Эффективная ширина спектра сигнала. Корреляционные модели детерминированныхсигналов. Автокорреляционная функция вещественного сигнала (АКФ)и ее свойства. Связь АКФ сигнала с его энергетическим спектром. АКФ периодического вещественного сигнала. Свертка сигналов. Сигнал на выходе линейной системы. Частотная характеристика линейной системы. Свертка двух сигналов во временной и частотной области. Соотношение между сверткой и корреляцией. Раздел 4. Дискретные сигналы в радиотехнике и телекоммуникации. Спектры дискретных сигналов .Дискретное преобразование Фурье. Алгоритмы БПФ. Дискретизация аналогового сигнала. Теорема Котельникова. Дискретное преобразование Фурье. Дискретизация по времени и квантование по уровню. Структура и разрядность АЦП. Шум квантования. Амплитудно-импульсная модуляция (АИМ), широтно-импульсная модуляция (ШИМ), время-импульсная модуляция (ВИМ), импульсно-кодовая модуляция (ИКМ). Математическая модель дискретизированного сигнала. Теорема Котельникова. Обобщенный ряд Фурье по системе базисных (ортогональных) функций Котельникова (ряд Котельникова) Восстановление аналогового сигнала по дискретным отсчетам. Спектральная плотность базисных функций Котельникова. Спектр дискретизированного сигнала. Преобразование Фурье для дискретизированного сигнала. Эффект наложения при дискретизации - элайсинг. Спектр дискретизированного сигнала при произвольной форме дискретизирующих импульсов, отличных о дельта-функций. Модель дискретного сигнала в частотной области. Дискретное преобразование Фурье. Поворачивающие множители и их свойства. Быстрое преобразование Φ урье (БП Φ) . Алгоритмы БП Φ с прореживанием по времени. Алгоритмы БПФ с прореживанием по частоте. Применение

Раздел 5. Модуляция сигналов в радиотехнике и телекоммуникации.

БПФ для вычисления свертки.

Виды аналоговой модуляции: амплитудная модуляция, угловая модуляция (ЧМ, ФМ, ОФМ), мгновенная полная фаза, мгновенная частота. Временныеи векторные диаграммы модулированых сигналов. Спектры модулированных сигналов. Демодуляция АМ сигнала. Амплитудное детектирование, квадратичное детектирование (нелинейное преобразование в режиме малого сигнала). Балансная модуляция сигналов и подавление несущего сигнала. Универсальный квадратурный модулятор. Формирование комплексной огибающей (Baseband signal). Цифровая модуляция сигналов. Сигналы с дискретной амплитудной модуляцией. Дискретная частотная модуляция сигнало. Дискретная фазовая модуляция сигналов. Пискретная квадратурная модуляция сигналов. Технологии и виды цифровой модуляции в современных системах связи. Цифровая бинарная модуляция: один символ - один бит. Сигнальные созвездия, фазовая плоскость синфазной I и квадратурной Q компонент. Цифровая квадратурная модуляция КАМ 16: один символ - 4 бита в той же полосе частот. Код Грея. Решетчатая модуляция. Сигнальные-кодовые конструкции цифровых сигналов. Помехоустойчивость различных видов модуляции.

<u>Раздел 6. Математические модели случайных процессов. Прохождение случайных процессов через линейные цепи.</u>

Случайные сигналы и их статистические характеристики: функция распределения вероятности , плотность распределения вероятности. Числовые характеристикизакона распределения: математическое ожидание, дисперсия, автокорреляционная функция случайного процесса. Стационарные и эргодические сигналы. Сигналы с нормальным законом распределения вероятности мгновенных значений. Связь корреляции и независимости выборок из нормального случайного сигнала. Связь АКФ с энергетическим спектром случайного сигнала, теорема Винера – Хинчина, интервал корреляции, белый

шум. Узкополосные случайные процессы, распределение огибающей и фазы узкополосного случайного процесса. Спектрально-корреляционный анализ прохождения случайных сигналов через линейные.

Раздел 7. Основы теории передачи информации. Информационные характеристики источников сообщений и каналов. Энтропия и количество информации. Информационные характеристики источников дискретных сообщений. Модели источников дискретных сообщений. Свойства эргодических источников. Избыточность и производительность дискретного источника. Двоичный источник сообщений. Информационные характеристики дискретных каналов. Идеальные (без помех) и реальные (с помехами) каналы. Скорость передачи и пропускная способность канала. Двоичный и "м-ичный" канал. Информационные характеристики источников непрерывных сообщений. Дифференциальная энтропия. Энтропия равномерного распределения. Энтропия гауссовского белого шума. Эпсилон-энтропия независимых сообщений. Модели непрерывных каналов. Модели дискретных каналов. Сравнение пропускных способностей дискретных и непрерывных каналов. Теоремы кодирования Шеннона для каналов связи без помех и с помехами.Классификация источников сообщений и каналов. Три подхода к определению понятия "Количество информации": комбинаторный, вероятностный, алгоритмический. Количество информации как мера снятой неопределенности. Информационные характеристики источников сообщений: энтропия - мера неопределенности состояний источника сообщений в среднем. Мера неопределенности Р. Хартли и К. Шеннона. Свойства энтропии дискретного источника. Априорная (безусловная) энтропия. Апостериорная (условная) энтропия дискретного источника и ее свойства. Информационные характеристики каналов: максимальная скорость передачи информации (пропускная способность канала), коэффициент использования канала. Раздел 8. Основы теории эффективного кодирования дискретных сообщений (ДС). Кодирование источника ДС.

Классификация кодов. Эффективное оптимальное кодирование как способ согласования информационных характеристик источника и канала. Кодирование источников без памяти (символы сообщений независимы) и с памятью (символы коррелированные между собой). Кодирование без потерь и с потерями. Кодовое дерево, префиксные коды и неравенство Крафта , равномерное кодирование, статистическое кодирование: кодирование по методу Шеннона-Фано, кодирование по методу Хафмена, теорема Шеннона о кодировании источника независимых сообщений, условие оптимальности кодов. Словарное кодирование, алгоритм Лемпеля - Зива -Велча. Понятие об арифметическом кодировании.

<u>Раздел 9. Основы теории помехоустойчивого кодирования. Кодирование канала Блочные</u> линейные коды.

Принципы корректирующего (помехоустойчивого) кодирования и декодирования с обнаружением и исправлением ошибок. Линейные систематические блочные коды. Код Хэмминга. Производящий полином, порождающая матрица. Проверочная матрица, фундаментальная матрица блочного линейного кода, понятие синдрома и синдромное декодирование блочных кодов.

<u>Раздел 10. Основы теории потенциальной помехоустойчивости приёма и принципы</u> оптимального приёма дискретных и непрерывных сообщений.

Содержание и классификация задач оптимального приёма ДС. Оптимальный приём ДС в КС с детерминированной и стохастической структурой. Обнаружение и различение ДС. Критерии оптимального приёма ДС. Байесовский подход к оптимальному приему. Априорная и апостериорная вероятности, средний риск и отношение правдоподобия гипотез приема. Алгоритмы работы и структурные схемы оптимальных приёмников ДС в

гауссовском КС. Синтез когерентного демодулятора ДС на фоне АБГШ. Согласованная фильтрация финитных во времени сигналов. Импульсная характеристика и передаточная функция согласованного фильтра.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет. Курсовая работа

Б1.В.11 Основы построения инфокоммуникационных систем и сетей

Цели освоения дисциплины

Целью преподавания дисциплины «Основы построения инфокоммуникационных систем и сетей» является:

обеспечение формирования фундамента подготовки будущих специалистов в области сервисно-эксплуатационного обслуживания и исследование сетей связи, а также, создание необходимой базы для успешного овладения последующими специальными дисциплинами учебного плана.

Место дисциплины в структуре ОП

Дисциплина «Основы построения инфокоммуникационных систем и сетей» Б1.В.11 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Основы построения инфокоммуникационных систем и сетей» опирается на знании дисциплин(ы) «Метрология, стандартизация и сертификация».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен к сбору, обработке, распределению и контролю выполнения заявок на техподдержку оборудования с помощью инфокоммуникационных систем и баз данных (ПК-10)
- Способен к администрированию процесса оценки производительности и контроля использования и производительности сетевых устройств, программного обеспечения информационно-коммуникационной системы (ПК-13)

- Способен к проведению регламентных работ на сетевых устройствах и программном обеспечении инфокоммуникационной системы (ПК-15)

Содержание дисциплины

Раздел 1. Базовые принципы инфокоммуникационных сетей

Цели, задачи и структура курса. Краткий обзор истории развития инфокоммуникаций. Ученые и изобретения. Модель сети. Стандартизация

Раздел 2. Сеть в помещении пользователя

Первичные сигналы и их физические характеристики (телефонные, передачи данных, факсимильные). Методы кодирования. Базовые термины. Аналоговый телефон и факсимильная установка. Сигнализация по двухпроводным аналоговым абонентским линиям: Параметры сигналов. Методы уплотнения абонентской линии. Абонентские линии Xdsl. Цифровой терминал ISDN.

Раздел 3. Сеть доступа

Архитектура сети: ISDN, PON, Ethernet. Протоколы сетей доступа: шлейфный способ, DTMF, LAP-D/DSS-1.

Раздел 4. Базовая сеть

Сеть ТфОП. Межстанционные протоколы ТфОП. Системы массового обслуживания в телефонии. Сеть передачи данных. Протоколы маршрутизации. VoIP - передача речи по сети передачи данных. Сеть сотовой связи.

Раздел 5. Средства поддержки услуг

Традиционные услуги ТфОП. Интелектуальные услуги ТфОП. Традиционные услуги в сетях передачи данных. Услуги сетей NGN.

Раздел 6. Перспективные направления

Пост NGN. Анализ сдвига парадигмы инофокоммуникационных сетей от систем операторского класса к оборудованию пользователя.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.12 Физические основы формирования видеоконтента

Цели освоения дисциплины

Целью преподавания дисциплины «Физические основы формирования видеоконтента» является:

изучение физических основ телевидения и принципов формирования видеосигналов.

Место дисциплины в структуре ОП

Дисциплина «Физические основы формирования видеоконтента» Б1.В.12 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Физические основы формирования видеоконтента» опирается на знании дисциплин(ы) «Высшая математика»; «Информатика»; «Теоретические основы электротехники»; «Теория электрических цепей»; «Теория электрической связи»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Физические основы передачи визуальной информации

Видеоконтент, понятие и виды видеоконтента. Зрительный анализатор и его структура. Оптическая и световоспринимающая системы глаза. Цветовое зрение и основные принципы колориметрии. Законы смешения цветов. Стандартные колориметрические системы. Колориметрия в цветном телевидении. Идеальная (колориметрическая) ТВ камера. Матричная коррекция цветопередачи.

Раздел 2. Принципы формирования видеоконтента

ГОСТ 7845-Упрощенная структурная схема ТВС. Согласование характеристик ТВ системы с психофизиологическими характеристиками стандартного наблюдателя. Анализ и синтез изображения. Прогрессивная и чересстрочная развертки. Параметры ТВ систем.

Раздел 3. Телевизионный сигнал

Формирование полного телевизионного сигнала. Сигналы гашения и синхронизации. Спектр ТВ сигнала. Определение верхней и нижней граничных частот, постоянная составляющая ТВ сигнала. Формирование сигналов цветного телевидения, сигналы первичных цветов. Формирование яркостного и цветоразностных сигналов. Передача информации о цвете по каналам связи.

Раздел 4. Оценка качества изображений

Светооптические параметры объекта. Качественные показатели изображения. Виды

искажений. Причины возникновения искажений методы, их коррекции. Параметры ТВ изображения. Методы оценки качества изображения по испытательным таблицам.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.13 Физические основы акустики

Цели освоения дисциплины

Целью преподавания дисциплины «Физические основы акустики» является: изучение студентами основных физических характеристик звуковых полей (процессы распространения, дифракции, интерференции, отражения и поглощения, рефракции, и др.); строения слуховой системы человека, а также психофизических процессов слухового восприятия звука (громкость, маскировка, нелинейные искажения, пространственная локализация, высота, тембр).

Место дисциплины в структуре ОП

Дисциплина «Физические основы акустики» Б1.В.13 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Физические основы акустики» опирается на знании дисциплин(ы) «Высшая математика»; «Иностранный язык»; «Теория вероятностей и математическая статистика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)

- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Звуковое поле

Природа звуковых волн. Скорость распространения звуковой волны. Длина звуковой волны. Звуковое давление и колебательная скорость. Линейные характеристики звукового поля. Энергетические характеристики звукового поля. Акустическое сопротивление среды. Уровни. Шкала децибелов. Стандартные октавные и третьоктавные шкалы.

Раздел 2. Излучение и прием звука

Звуковое поле сферической волны. Звуковое поле плоской волны. Звуковое поле цилиндрической волны. Звуковые источники. Излучение пульсирующего шара. Осциллирующий шар. Плоский поршневой излучатель. Плоский поршневой излучатель в малом экране. Излучение жесткого конуса. Отражение и преломление (рефракция) звука. Дифракция и рассеяние звуковых волн. Поле множества синфазных источников. Интерференция волн. Стоячие волны. Биения. Эффект Доплера.

Раздел 3. Строение слуховой системы человека

Строение периферической слуховой системы. Квнешнее ухо (ушная раковина, слуховой канал, барабанная перепонка). Принцип работы среднего уха. Механизм преобразования звукового сигнала во внутреннем ухе. Тонотопическое отображение на базилярной мембране. Высшие отделы слуховой системы. Критические полосы слуха.

Раздел 4. Основные свойства слуха

Абсолютный порог слышимости. Болевой порог и область слышимости. Амплитудные дифференциальные слуховые пороги. Частотные дифференциальные слуховые пороги. Временные дифференциальные пороги. Ощущение громкости. Уровень громкости. Громкость тональных звуков. Громкость сложных звуков. Защита органов слуха. Нелинейные свойства слуха. Одновременное (моноауральное) маскирование звуков. Маскирование внутри и вне критической полосы. Временное (неодновременное) маскирование. Высота звука. Высота простых тонов. Высота сложных звуков. Временная теория восприятия высоты и теория места. Пространственно-временная теория восприятия высоты тона. Слуховой анализ консонансов и диссонансов. Тембр звука.

Раздел 5. Пространственный слух

Звуковое поле у обоих ушей. Направленность слуха в медианной плоскости. Локализация по глубине и локализация внутри головы. Бинауральные временные различия. Бинауральные разности уровня. Взаимодействие временных и амплитудных бинауральных различий. Локализация суммы. Закон первой волны (эффект Хааса). Подавление прямого звука. Бинауральное распознавание сигналов. Бинауральное демаскирование.

Раздел 6. Качество звуковоспроизведения

Высокая точность воспроизведения звука. Параметры, влияющие на качество звуковоспроизведения. Представление результатов измерений параметров качества аудиоаппаратуры. Прозрачность звучания. Распространенные заблуждения о качестве звуковопроизведения.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.14 Прикладные пакеты моделирования

Цели освоения дисциплины

Целью преподавания дисциплины «Прикладные пакеты моделирования» является:

приобретение знаний и навыков в технологии компьютерного моделирования в программной среде (системе) MATLAB.

Место дисциплины в структуре ОП

Дисциплина «Прикладные пакеты моделирования» Б1.В.14 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Прикладные пакеты моделирования» опирается на знании дисциплин(ы) «Дискретная математика»; «Информатика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

<u>Раздел 1. Знакомство с MATLAB. Основные объекты языка MATLAB</u>

Состав, назначение, интерфейс и система помощи MATLAB. Режим прямых вычислений. Базовые объекты языка MATLAB. Рабочая область памяти и сохранение данных. Правила и пример оформления электронного отчета

Раздел 2. Операции с матрицами

Матрицы числового типа. Функции генерации типовых матриц. Преобразование матриц. Поэлементные операции с матрицами. Операции с матрицами в задачах линейной алгебры. Транспонирование и эрмитово сопряжение матриц. Обращение матриц.

Матричное деление. Нормы матрицы и вектора. Операции с матрицами в задачах математической статистики

Раздел 3. Типы массивов

Матрицы числового, логического и символьного типа. Массивы записей (структуры).

Массивы ячеек. Определение типа массивов

Раздел 4. Средства графики

Общие принципы построения и оформления графиков. Двумерные графики и управление их свойствами. Трехмерные графики и управление их свойствами

Раздел 5. Режим программирования: script-файлы и function-файлы

Режим программирования. Назначение и правила создания script-файлов и

functionфайлов. Ввод/вывод данных. Пауза и досрочное прерывание программы. Создание и хранение M-файлов

Раздел 6. Режим программирования: операторы разветвлений и циклов

Операторы организации разветвлений: if, switch. Операторы организации циклов: for, while, break

Раздел 7. Типовые численные методы

Операции с многочленами. Вычисление корней уравнения. Аппроксимация и интерполяция. Поиск локальных минимумов. Численное интегрирование

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.15 Создание конструкторской документации с использованием компьютерных технологий

Цели освоения дисциплины

Целью преподавания дисциплины «Создание конструкторской документации с использованием компьютерных технологий» является:

изучение выполнения проектной и конструкторской документации по нормативным документам с использованием современных компьютерных технологий.

Место дисциплины в структуре ОП

Дисциплина «Создание конструкторской документации с использованием компьютерных технологий» Б1.В.15 является дисциплиной вариативной части цикла блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Создание конструкторской документации с использованием компьютерных технологий» опирается на знании дисциплин(ы) «Инженерная и компьютерная

графика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен осуществлять подготовку типовых технических проектов и первичный контроль соответствия разрабатываемых проектов и технической документации на различные инфокоммуникационные объекты национальным и международным стандартам и техническим регламентам (ПК-23)

Содержание дисциплины

Раздел 1. Этапы проектирования электронных средств

Цели и задачи курса. Жизненный цикл изделия. Организация процесса проектирования электронной аппаратуры. НИР. Этапы ОКР - техническое задание, техническое предложение, эскизный проект, технический проект, рабочее проектирование.

Раздел 2. Стандартизация при проектировании электронных средств

Виды стандартов. Системы стандартов.

Раздел 3. Техническая документация

Проектная и техническая документация. Комплектность конструкторской документации Раздел 4. ЕСКД. Схемная документация

Основные положения ЕСКД. Особенности выполнения структурных схем. Особенности выполнения функциональных схем. Особенности выполнения электрических схем и перечня элементов к ней.

Раздел 5. ЕСКД. Конструкторская документация

Основные положения ЕСКД. Конструкторская документация. Особенности выполнения чертежей деталей. Особенности выполнения сборочных чертежей и спецификаций к сборочным единицам разного уровня сложности.

Раздел 6. ЕСКД. Электронная документация

Электронный конструкторский документ. Электронная подпись. Информационноудостоверяющий лист

Раздел 7. ЕСТД. Технологическая документация

Основные положения ЕСТД. Технологическая документация

Раздел 8. ЕСТПП. Технологическая подготовка производства

Основные положения ЕСТПП

Раздел 9. ЕСПД. Программная документация

Основные положения ЕСПД.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Б1.В.16 Техническая электродинамика

Цели освоения дисциплины

Целью преподавания дисциплины «Техническая электродинамика» является: изучение основных законов теории электромагнитного поля, способов решения системы уравнений Максвелла, исследование явлений, возникающих при распространении электромагнитных волн в свободном пространстве и различных направляющих системах и развитие у студентов качественно нового знания об окружающем мире, позволяющего понимать природу происходящих электромагнитных явлений и давать им объективную оценку.

Место дисциплины в структуре ОП

Дисциплина «Техническая электродинамика» Б1.В.16 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Техническая электродинамика» опирается на знании дисциплин(ы) «Высшая математика»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Введение. Источники и векторы электромагнитного поля Место и назначение дисциплины. Векторы электромагнитного поля. Свободные и связанные заряды. Токи проводимости и переноса. Плотности заряда и тока. Электромагнитные параметры среды. Классификация сред.

Раздел 2. Уравнения Максвелла. Граничные условия. Энергетический баланс ЭМП.

Уравнения Максвелла в интегральной и дифференциальной формах. Закон сохранения заряда и уравнение непрерывности. Сторонние источники. Монохроматическое ЭМП. Комплексная диэлектрическая проницаемость среды. Граничные условия для касательных и нормальных составляющих векторов электромагнитного поля для общего случая и на идеально проводящей поверхности. Энергетический баланс ЭМП. Теорема Умова-Пойнтинга.

Раздел 3. Методы решения уравнений Максвелла

Однородная и неоднородная система уравнений Максвелла. Однородное и неоднородное волновое уравнение. Единственность решения. Скалярный и векторный потенциал. Внутренняя и внешняя задача. Функция Грина.

Раздел 4. Излучение электромагнитных волн (ЭМВ).

Элементарные излучатели. Диполь Герца, его ЭМП в ближней и дальней зонах. Волновой характер решения. Диаграмма направленности. Мощность и сопротивление излучения. Раздел 5. Плоские волны в однородной изотропной среде.

Понятие о локально плоской волне. Декартова система координат для ее описания. Плоская волна в среде с потерями. Коэффициент затухания и распространения. Плоская волна в реальном диэлектрике и проводнике. Приближенное граничное условие Леонтовича-Щукина. Поверхностный эффект. Поляризация плоских волн. Наложение плоских волн. Коэффициент отражения, коэффициент бегущей и стоячей волны. Плоская волна в произвольной системе координат. Волновой вектор.

Раздел 6. Волновые явления на границе раздела сред.

Законы Снеллиуса. Коэффициенты отражения и прохождения. Явление полного внутреннего отражения и его практическое использование. Коэффициенты Френеля для различных поляризаций волны. Угол Брюстера

Раздел 7. Направляющие системы и направляемые волны.

Типы направляющих систем и направляемых волн. Волны классов Т, Е и Н. Структура и свойства ЭМП в волноводах. Критическая частота. Режимы полей в волноводах. Фазовая и групповая скорости. Прямоугольные волноводы. Решение волновых уравнений для продольных составляющих полей классов Е и Н. Передаваемая мощность и затухание основной волны. Элементы возбуждения, выбор размеров поперечного сечения, структура полей высших типов. Круглый волновод, структура полей, применение ряда волн в технике связи. Коаксиальный волновод, структура поля волны класса Т, условие одноволнового режима, волновое сопротивление, использование в технике связи. Полосковые линии, структура поля, выбор поперечных размеров. Микрополосковые линии. Линии передачи оптического диапазона – световоды. Затухание волн в световодах. Дисперсионные искажения.

Раздел 8. Объемные резонаторы

Волноводные резонаторы. Стоячая волна в волноводе и ее структура. Коаксиальный и полосковый резонаторы с укорачивающей емкостью. Возбуждение резонаторов. Частотная характеристика, нагруженная, собственная и внешняя добротности.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.17 Цифровая обработка сигналов

Цели освоения дисциплины

Целью преподавания дисциплины «Цифровая обработка сигналов» является: приобретение базовых знаний и навыков в области цифровой обработкисигналов (ЦОС).

Место дисциплины в структуре ОП

Дисциплина «Цифровая обработка сигналов» Б1.В.17 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Цифровая обработка сигналов» опирается на знании дисциплин(ы) «Высшая математика»; «Дискретная математика»; «Теория электрических цепей».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Введение в ЦОС

Основные типы сигналов. Нормирование времени. Типовые дискретные сигналы.

Нормирование частоты. Основная полоса частот. Обобщенная схема ЦОС

Раздел 2. Математическое описание ЛДС во временной области

Определение и свойства ЛДС. Импульсная характеристика (ИХ). Формула свертки.

Разностное уравнение (РУ). Рекурсивные и нерекурсивные ЛДС. КИХ и БИХ ЛДС.

Определение и первый критерий устойчивости ЛДС

Раздел 3. Математическое описание ЛДС в z- области

Определение и свойства Z- преобразования. Соотношение между р- и z-плоскостями.

Вычисление обратного Z- преобразования. Передаточная функция и ее разновидности.

Связь с РУ. Второй критерий устойчивости

Раздел 4. Математическое описание ЛДС в частотной области

Частотная характеристика. Связь с передаточной функцией. АЧХ, ФЧХ и их свойства.

Расчет и анализ АЧХ и ФЧХ

Раздел 5. Структуры ЛДС

Определение структуры. Связь с видом передаточной функции. Основные разновидности структур

Раздел 6. Цифровые фильтры (ЦФ)

Определение и классификация ЦФ. Этапы проектирования. Задание требований к АЧХ. КИХ-фильтры с линейной ФЧХ. Синтез КИХ-фильтров: метод окон; метод наилучшей равномерной (чебышевской) аппроксимации. Синтез БИХ-фильтров: метод инвариантности ИХ; метод билинейного Z-преобразования. Анализ характеристик КИХ- и БИХ-фильтров

Раздел 7. Описание дискретных сигналов в частотной области

Спектральная плотность и ее свойства. Связь спектральных плотностей дискретного и аналогового сигналов. Операции со спектральной плотностью

Раздел 8. Дискретное преобразование Фурье (ДПФ)

ДПФ периодических и конечных последовательностей. Свойства ДПФ

Раздел 9. Быстрое преобразование Фурье (БПФ)

Оценка вычислительной сложности ДПФ. Алгоритм БПФ Кули-Тьюки. Оценка вычислительной сложности БПФ. Начальные условия БПФ. Начальные условия БПФ. Быстрое вычисление ОДПФ

Раздел 10. Эффекты квантования в цифровых системах с фиксированной точкой Источники ошибок квантования. Эффекты квантования: шум АЦП; собственный шум цифровой системы; ошибки квантования коэффициентов передаточной функции; ошибки переполнения сумматоров

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.18 Основы деловых коммуникаций

Цели освоения дисциплины

Целью преподавания дисциплины «Основы деловых коммуникаций» является: формирование целостного представления о процессе, специфике, параметрах и закономерностях деловых коммуникаций, комплексное изучение социально-психологических установок и личностных характеристик человека, относящихся к регуляции его социального поведения в процессе делового общения, а также усвоение основных психологических закономерностей, влияющих на эффективность профессионального управленческого решения. Дисциплина «Основы деловых коммуникаций» должна способствовать развитию творческих способностей студентов, умению формулировать и решать задачи изучаемой специальности, умению творчески применять и самостоятельно повышать свои знания.

Место дисциплины в структуре ОП

Дисциплина «Основы деловых коммуникаций» Б1.В.18 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Основы деловых коммуникаций» опирается на знании дисциплин(ы) «Социология».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен к составлению аналитических отчетов на основе сбора, аналитического и численного исследования и построения прогнозов по продажам инфокоммуникационных систем и/или их составляющих (ПК-7)
- Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах) (УК-4)

Содержание дисциплины

Раздел 1. Общение как социально-психологическая категория / Общение и коммуникация Общение и коммуникация: сравнительный анализ понятий. Общение как коммуникация и взаимодействие. Функции и виды общения. Коммуникативная, перцептивная, интерактивная стороны общения. Вербальные и невербальные средства общения. Механизмы межличностной перцепции.

Раздел 2. Структура коммуникативного процесса

Основные понятия, классификации и теории коммуникации. Коммуникативный процесс и его составляющие. Модели коммуникативного процесса. Средства и каналы коммуникации. Виды коммуникации: познавательная, экспрессивная, убеждающая, суггестивная, ритуальная. Коммуникативные стили. Ролевая концепция коммуникаций. Аудитория коммуникации и типы коммуникации.

Раздел 3. Деловая коммуникация как процесс

Цели деловых коммуникаций. Функции деловых коммуникаций. Формы деловых коммуникаций. Модели деловых коммуникаций

Раздел 4. Деловые коммуникации в группах

Процессы организации и управления групповой работы. Виды коммуникативных потоков в организации. Межгрупповые отношения и взаимодействия. Деловые переговоры и совещания: стили и специфика проведения. Социально-психологическая характеристика деловых и личных взаимоотношений. Ролевое поведение в деловом общении. Техники влияния, аргументации и контраргументации, манипулятивные техники. Факторы, повышающие эффективность деловых коммуникаций.

Раздел 5. Коммуникатор и коммуникант: анализ взаимодействия

Классификации коммуникативных личностей и стилей коммуникации и их роль в деловой коммуникации. Взаимодействие в деловой сфере, коммуникативная компетентность. Проявления индивидуально-психологических особенностей в процессе деловых коммуникаций. Модели, теории, методы и техники самопрезентации. Техники и правила активного слушания, рефлексивного и нерефлексивного слушания.

Раздел 6. Этика деловых коммуникаций

Универсальные этические принципы и особенности их проявления в практике деловых коммуникаций. Основополагающие принципы деловых коммуникаций. Этика и нормы деловых коммуникаций.

Общая трудоемкость дисциплины

72 час(ов), 2 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.19 Формирование и обработка звуковых сигналов

Цели освоения дисциплины

Целью преподавания дисциплины «Формирование и обработка звуковых сигналов» является:

формирование у студентов знаний, навыков и опыта в области формирования и обработки звуковых сигналов на всех этапах их записи, обработки, передачи и воспроизведения.

Место дисциплины в структуре ОП

Дисциплина «Формирование и обработка звуковых сигналов» Б1.В.19 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Формирование и обработка звуковых сигналов» опирается на знании дисциплин(ы) «Звуковое вещание»; «Иностранный язык»; «Теория электрических цепей»; «Физические основы акустики»; «Цифровая обработка сигналов».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Типовые устройства для обработки аудиосигналов

Обработка аудиосигналов, выполняемая во время записи, сведения и мастеринга. Решение технических и художественных задач при обработке звуковых сигналов. Ручные регуляторы уровня. Согласование сопротивлений с Помощью четырехполюсника. Ступенчатые делители напряжения. Потенциометры. Регуляторы уровня с косвенным управлением. Разделительные И комбинирующие цепи. Пассивное смесительное устройство. Активное смесительное устройство. Смесительное устройство с развязывающими сопротивлениями (усилителями). Этапы обработки звукового сигнала в микшерном пульте. Организация студийного оборудования при использовании цифрового микшерного пульта. Усилители звуковых сигналов. Классы усилительных устройств (А, В, С, D). Искажения в усилителях. Операционные усилители. Стереофонические регуляторы. Суммарно-разностный преобразователь. Регулятор ширины базы. Регулятор направления. Рихтунгмикшер. Панорамный регулятор.

Раздел 2. Частотная обработка аудиосигналов

Цели регулирования формы спектра. Аналоговые фильтры первого порядка. Активные аналоговые фильтры первого порядка. Особенности аналоговых и цифровых фильтров. Регуляторы плавного подъема и спада АЧХ. Фильтры среза АЧХ. Шельфовые фильтры. Пиковые фильтры. Фильтры присутствия. Эквалайзеры.

Раздел 3. Динамическая обработка аудиосигналов

Типичная схема включения устройств динамической обработки. Условия неискаженной передачи сигнал. Сжатие динамического диапазона. Автоматические регуляторы уровня (АРУ). Регулируемое звено АРУ. Управляющее звено АРУ. Адаптивные АРУ. Статические параметры АРУ. Амплитудные и регулировочные характеристики АРУ. Динамические параметры АРУ. Переходная характеристика АРУ. Многополосная динамическая обработка аудиосигналов. Комбинированные АРУ. Искажения, вносимые АРУ. Loudness war (война громкости). Последствия чрезмерного уменьшения динамического диапазона (гиперкомпрессии).

Раздел 4. Системы и устройства шумоподавления

Помехи в каналах и трактах звукового вещания. Методы снижения помех в каналах и трактах звукового вещания. Система частотных предыскажений. Контур для повышения разборчивости речи. Устройство динамического регулирования полосы пропускания. Шумоподавитель Dynamic Noise Limiter. Компандерная система шумоподавления. Система предельного сжатия динамического диапазона (управляемый компандер). Системы шумоподавления Dolby-A, Dolby-B.

Раздел 5. Устройства звуковых эффектов

Устройства звуковых эффектов на основе линий задержки: базовая задержка (базовая линия задержки (basic delay); линия задержки с обратной связью (delay with feedback); slapback delay; multitap delay; ping pong delay; вибрато (vibrato); базовый фленжер (basic

flanger); фленжер с обратной связью (flanger with feedback); базовый хор (basic chorus); многоголосый/ стереофонический хор (multivoice/stereo chorus). Устройства звуковых эффектов на основе фильтров: wah-wah; фейзер (phaser); фейзер с обратной связью (phaser with feedback); стереофонический фейзер (stereo phaser). Устройства звуковых эффектов на основе амплитудной модуляции: тремоло (tremolo); кольцевая модуляция (ring modulation). Устройства звуковых эффектов на основе искажений: overdrive, distortion; fuzz.

Раздел 6. Звукосниматели

Звукосниматели. Классификация звукоснимателей. Уравнение свободных колебаний струны. Колебания защепленной струны. Влияние положения звукоснимателя. Электромагнитные звукосниматели. Конструкция и принцип действия электромагнитного звукоснимателя. Электромагнитный звукосниматель как часть электрической цепи. Двухкатушечные электромагнитные звукосниматели. Пьезоэлектрические звукосниматели. Пьезоэлектрический звукосниматель как часть электрической цепи. Оптические звукосниматели. Типы конструкции оптических звукоснимателей (фотопрерыватель; фотоотражатель).

Раздел 7. Моделирование и синтез аудиосигналов

Моделирование аудиосигналов. Синтез звуковых сигналов. Суммирующий (аддитивный) синтез. Вычитающий (субтрактивный) синтез. Операторный синтез. Волновой синтез. Электронные музыкальные инструменты и их классификация. Получение звуковых колебаний путем расстройки двух генераторов ВЧ. Получение звуковых колебаний выделением из шумового спектра узких полос. Одноголосные электронные музыкальные инструменты. Многоголосные электронные музыкальные инструменты. Электронный музыкальный синтезаторы. Виды синтезаторов.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.20 Основы разработки систем на кристалле

Цели освоения дисциплины

Целью преподавания дисциплины «Основы разработки систем на кристалле» является:

Целю является получения начальных сведений о структуре и принципах работы систем на кристалле (СнК), изучение инструментария разработки и различных радиоприложений на СнК.

Место дисциплины в структуре ОП

Дисциплина «Основы разработки систем на кристалле» Б1.В.20 является

дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Основы разработки систем на кристалле» опирается на знании дисциплин(ы) «Информатика»; «Микроконтроллеры и микропроцессоры»; «Микропроцессорные устройства».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1) - Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)

Содержание дисциплины

Раздел 1. Введение

Основной цикл проектирования систем на кристалле. Понятие ASIC, FPGA, CPLD, HDL, SoC, NoC. Основные производители и семейства FPGA и Soc. Области применения SoC. Программируемые логические матрицы. Сложные программируемые логические интегральные схемы. Базовые матричные кристаллы. Программируемые пользователем вентильные матрицы. Аппаратная структура системы на кристалле.

Раздел 2. Функционально логическое проектирование

Потенциальные и импульсные сигналы, переходные процессы в цифровых схемах, комбинационные, синхронные, асинхронные схемы.

Раздел 3. Средства проектирования систем на кристалле

Симуляция, верификация, косимуляция. Прототипирование. Цифровой синтез. Языки программирования для цифрового синтеза. Verilog, System Verilog, VHDL, SystemC. RTL-описание проекта. Перенос проектов с платформы FPGA на ASIC

Раздел 4. Софт-процессорное ядро

Моделирование процессорного ядра. Назначение и архитектура процессорного ядра. Архитектура внутренней шины процессорного ядра. Отладка программного обеспечения. Раздел 5. Аппаратные процессорные ядра

Процессорное ядро ARM Cortex. Подключение к процессору пользовательских устройств. Команды пользователя. Поддержка отладочных средств.

Раздел 6. Интерфейсы взаимодействия процессора и ПЛИС

Структура интерфейса AXI (сигналы, размещение в памяти тактирование, протокол обмена и управление), AXI4 DMA, AXI4-Stream.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.21 Звуковое вещание

Цели освоения дисциплины

Целью преподавания дисциплины «Звуковое вещание» является: изучение студентами основных принципов аналого-цифрового преобразования звуковых сигналов; статистических характеристик аналоговых и цифровых аудиосигналов; алгоритмов статистической и психоакустической компрессии цифровых аудиоданных; волновых и статистических методов анализа звуковых полей открытых пространств и в помещениях; методов создания оптимальных акустических условий в студийных помещениях и помещениях прослушивания, включая способы акустической обработки помещений с использованием звукопоглощающих и звукоизолирующих конструкций и применения электронных средств коррекции; принципов построения систем озвучения и звукоусиления (в том числе стереофонических, амбиофонических и др.), с учетом анализа устойчивости этих систем и применения методов борьбы с акустической обратной связью; основных принципов формирования и распространения программ телерадиовещания.

Место дисциплины в структуре ОП

Дисциплина «Звуковое вещание» Б1.В.21 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Звуковое вещание» опирается на знании дисциплин(ы) «Инженерная и компьютерная графика»; «Иностранный язык»; «Прикладные пакеты моделирования»; «Теория вероятностей и математическая статистика»; «Технологии программирования»; «Физические основы акустики»; «Цифровая обработка сигналов».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с $\Phi \Gamma OC$:

- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способен осуществлять монтаж, наладку, настройку, регулировку, опытную проверку работоспособности, испытания и сдачу в эксплуатацию сооружений, средств и оборудования сетей (ПК-8)

Содержание дисциплины

Раздел 1. Цифровое представление звуковых сигналов

Виды аналого-цифрового преобразования. Амплитудно-импульсная модуляция. Антиэлайзинговая фильтрация. Реконструкция звуковых сигналов. Равномерное (линейное) квантование. Двоичное кодирование квантованного сигнала (прямой код, код со сдвигом, код с дополнением до двух). ИКМ с равномерным квантованием. Амплитудные характеристики линейного квантователя. Ошибки округления и квантования. Dithering. ИКМ с плавающей запятой. ИКМ с неравномерным шагом квантования (мгновенное компандирование, почти мгновенное компандирование). Дифференциальная ИКМ. Дельта-модуляция. Передискретизация. Сигма-дельта модуляция. Управление формой шума квантования без применения передискретизации.

Раздел 2. Звуковые сигналы и их характеристики

Средневыпремленное и среднеквадратическое значение сигнала. Понятие об уровне звукового сигнала. Акустические и электрические уровни. Уровень цифрового звукового сигнала. Суммирование уровней. Динамический диапазон звукового сигнала. Пик-фактор звукового сигнала. Необходимость сокращения динамического диапазона звуковых сигналов. Статистические характеристики звуковых сигналов. Законы распределения мгновенных значений сигнала во времени. Распределение длительностей выбросов и пауз. Мощность звуковых сигналов (текущая, среднесекундная, среднеминутная, долговременная). Спектры звуковых сигналов. Огибающая и мгновенная частота звуковых сигналов.

Раздел 3. Статистические методы компрессии цифровых аудиоданных Преимущества компрессии аудиоданных. Статистическая и психоакустическая избыточность цифровых звуковых сигналов. Классификация алгоритмов компрессии цифровых аудиоданных. Статистические методы компрессии цифровых аудиоданных. Информационная энтропия. Энтропийное кодирование. Коды переменной длины. Коды Хаффмана. ИКМ с линейным предсказанием. Алгоритмы сжатия без потерь (FLAC, MPEG-4 ALS). Субполосная адаптивная дифференциальная импульсно-кодовая модуляция. Алгоритм кодирования арt-X100.

Раздел 4. Психоакустическая компрессия цифровых аудиоданных Алгоритмы сжатия с потерями. Маскирование искажений. Принцип работы психоакустического кодека. Субполосное кодирование. Принцип работы психоакустической модели. Принцип распределения бит по субполосам. Алгоритмы компрессии цифровых аудиоданных стандратов МРЕG. Параметрическое кодирование звуковых сигналов. Метод копирования спектральных полос. Вокодеры с линейным предсказанием. Метод кодирования СЕLP. Процедуры объединения сигналов стереопары в стандартах МРЕG. Особенности применения алгоритмов компрессии цифровых аудиоданных.

Раздел 5. Акустические процессы в закрытых помещениях

Структура звукового поля в помещении. Поле отраженных звуков. Диффузное звуковое поле. Реверберация. Статистическая теория реверберации. Время реверберации. Геометрическая (лучевая) теория реверберации. Волновая теория реверберации. Собственные частоты помещения. Оптимальное время реверберации.

Раздел 6. Звукопоглощение и звукоизоляция

Поглощение звуковой энергии в помещении. Коэффициент звукопоглощения. Звукопоглощающие материалы. Звукопоглощающие конструкции. Однородные нерезонансные поглотители. Нерезонансные неоднородные звукопоглощающие конструкции. Резонансные звукопоглотители. Объемные и кулисные звукопоглотители. Распространение шума в помещениях и зданиях. Источники шума в жилых и общественных зданиях. Нормирование шума и звукоизоляция ограждений. Звукоизоляция от воздушного шума. Классификация звукоизолирующих ограждений. Однослойные ограждения. Многослойные и двухстенные огражения. Влияние на звукоизоляцию проемов, отверстий и щелей.

Раздел 7. Акустика концертных и лекционных залов, студий звукозаписи и контрольных

Акустика лекционных залов (аудиторий) и театральных залов драматических театров. Акустика залов оперных театров. Акустика концертных залов. Студии с нейтральной и «живой» акустикой. Реверберационные студии. Оркестровые студии. Вокальные студии. Студии с изменяемыми акустическими свойствами. Обстановка в студии. Акустика контрольных комнат. Способ создания оптимальных акустических условий в студийных помещениях.

Раздел 8. Звуковые системы

Назначение и классификация звуковых систем. Монофонические и обычные стереофонические системы. Предпочтительность стереофонического звучания. Локализация кажущегося источника звука (КИЗ) при двухканальном воспроизведени. Особенности стереофонической локализации при противофазном возбуждении громкоговорителей. Частотная зависимость локализации. Влияние реверберационного процесса первичного помещения на локализацию КИЗ. Стереосигнал и пространственная панорама при воспроизведении. Источники стереофонических сигналов. Обработка микрофонных сигналов. Регулировка направления и ширины стереопанорамы. Панорамный регулятор. Искажения пространственной панорамы. Интерференционные явления при стереовоспроизведении. Баланс громкости при стереовоспроизведении. Слуховое восприятие реверберационного процесса при двухканальной стереофонии. Зона стереоэффекта двухканальных систем воспроизведения. Пространственные характеристики двухканалыных акустических систем. Выборе оптимальной базы громкоговорителей. Квазистереофонические системы. Двухканальные системы повышенного качества звучания. Передача акустической атмосферы первичного помещения. Стереоамбиофонические системы. Матричные системы звукопередачи. Бинауральные звуковые системы. Многоканальные системы звукопередачи. Раздел 9. Озвучение помещений и открытых пространств

Назначение систем озвучения и звукоусиления. Типы систем озвучения и звукоусиления. Озвучение открытых пространств. Громкоговорители, используемые в системах озвучения и звукоусиления. Понятность и разборчивость речи. Акустическая обратная связь. Звукоусиление в помещении. Защита от акустической обратной связи. Системы синхронного перевода.

Раздел 10. Акустическое качество помещений записи и прослушивания Объективные акустические параметры и субъективные критерии оценки акустического качества помещений. Акустическое отношение и эквивалентная реверберация. Факторы четкости и реверберационных помех. Дополнительные критерии акустического качества помещений. Связь объективных параметров и субъективной оценки акустики помещений. Роль акустики в помещении прослушивания.

Раздел 11. Тракт формирования и распределения программ звукового вещания. Организация и структура систем вещания. Развитие звукового вещания. Виды вещания, каналы и тракты, вещание по радио, интернет и проводным сетям. Структура каналов и трактов звукового вещания. Тракт формирования программ. Аппаратно-студийный комплекс радиовещания. Аппаратно-студийный блок. Аппаратно-программный блок. Технология формирования программ звукового вещания. Автоматизация процессов подготовки и выдачи программ звукового вещания в эфир. Тракт первичного распределения программ. Организация междугородных каналов звукового вещания. Организация цифровых каналов звукового вещания. Назначение, классификация, построение систем и сетей проводного вещания. Многопрограммное проводное вещание. Системы оповещения населения.

Раздел 12. Стереофоническое вещание

Системы стереофонического радиовещания в диапазоне метровых волн. Формирование полярно-модулированного колебания и комплексного стереофонического сигнала в системе с полярной модуляцией. Полярный детектор. Суммарно-разностный стереодекодер. Ключевой стереодекодер. Формирование комплексного стереофонического сигнала в системе с пилот-тоном.

Раздел 13. Оценка качества звучания

Обобщенная модель формирования эмоциональной реакции слушателя на звуковое воздействие. Многомерная модель обобщенной оценки качества звучания. Классификация методов оценки качества звучания. Субъективно-статистическая экспертиза. Основные требования к помещению, оборудованию, экспертам. Расположение акустических систем и экспертов при проведении субъективностатистических экспертиз. Проведение субъективно-статистических экспертиз. Интегральные методы оценки качества. Дифференциальные методы оценки качества. Объективные методы оценки качества. Основные параметры качества трактов звукового вещания. Методы измерений основных параметров качества. Требования к проведению испытаний. Нормы допуска на параметры качества трактов звукового вещания. Недостатки традиционных методов оценки качества. Общая схема перцепционного метода объективной оценки качества аудиосигнала. Классификация перцепционных методов объективной оценки качества. Процедуры вычислений перцепционной модели оценки качества аудиосигналов.

Общая трудоемкость дисциплины

252 час(ов), 7 ЗЕТ

Форма промежуточной аттестации

Зачет, Экзамен. Курсовой проект

Б1.В.22 Технологии кодирования и распределения медиаконтента

Цели освоения дисциплины

Целью преподавания дисциплины «Технологии кодирования и распределения медиаконтента» является:

изучение технологии видеокодирования телевизионных и компьютерных изображений, алгоритмов видеокомпрессии, канального кодирования и модуляции медиаконтента, методов распределения медиаконтента в цифровых инфокоммуникационных сетях.

Место дисциплины в структуре ОП

Дисциплина «Технологии кодирования и распределения медиаконтента» Б1.В.22 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Технологии кодирования и распределения медиаконтента» опирается на знании дисциплин(ы) «Введение в профессию»; «Высшая математика»; «Дискретная математика»; «Иностранный язык»; «Информатика»; «Компоненты электронной техники»; «Материалы электронной техники»; «Метрология, стандартизация и сертификация»; «Микропроцессорные устройства».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)

Содержание дисциплины

<u>Раздел 1. Оцифровка и фильтрация изображений</u> Дискретизация и квантование. Теорема Котельникова. Линейная фильтация. Раздел 2. Нелинейная обработка изображений..

Алгоритмы и аппаратные средства нелинейной обработки изображений..

Раздел 3. Сжатие изображений.

Сжатие без потерь и с потерями информации.

<u>Раздел 4. Распространенные и перспективные стандарты компрессии изображений.</u> Стандарты MPEG-2, MPEG-4, H.264, H.265

Общая трудоемкость дисциплины

288 час(ов), 8 ЗЕТ

Форма промежуточной аттестации

Зачет, Экзамен. Курсовой проект

Б1.В.23 Электропитание устройств и систем телекоммуникаций

Цели освоения дисциплины

Целью преподавания дисциплины «Электропитание устройств и систем телекоммуникаций» является:

Изучение основных принципов преобразования электрической энергии, используемых при создании устройств гарантированного и бесперебойного электропитания инфокоммуникационных систем.

Место дисциплины в структуре ОП

Дисциплина «Электропитание устройств и систем телекоммуникаций» Б1.В.08 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Электропитание устройств и систем телекоммуникаций» опирается на знании дисциплин(ы) «Теоретические основы электротехники»; «Физические основы электроники»; «Электроника».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с $\Phi \Gamma OC$:

- Способность осуществлять мониторинг состояния и проверку качества работы, проведение измерений и диагностику ошибок и отказов телекоммуникационного оборудования, сетевых устройств, программного обеспечения инфокоммуникаций (ПК-4)

- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)

Содержание дисциплины

Раздел 1. Введение

Основные понятия и определения системы электропитания и их функциональные элементы.

Раздел 2. Трансформаторы

Общие сведения о трансформаторах. Режимы работы трансформаторов. Рабочие характеристики и показатели качества трансформаторов. Трехфазные трансформаторы.

Раздел 3. Выпрямительные устройства

Общие сведения о выпрямительных устройствах. Основы теории выпрямления. Работа ВУ на активно-индуктивную и активно- емкостную нагрузки. Управляемые выпрямители.

Раздел 4. Пассивные сглаживающие фильтры

Назначение, структурная схема, признаки классификации СФ. Показатели качества СФ. Принципы расчета.

Раздел 5. Полупроводниковые преобразователи постоянного напряжения

Назначение преобразователей постоянного напряжения. Принцип преобразования постоянного напряжения в переменне. Классификация, показатели качества и области применения ППН. Анализ основных схем транзисторных инверторов.

Раздел 6. Стабилизаторы напряжения и тока

Общие сведения о стабилизаторах. Компенсационные стабилизаторы постоянного напряжения и тока с непрерывным регулированием (НСН). Компенсационные стабилизаторы постоянного напряжения с импульсным регулированием (ИСН).

Стабилизаторы переменного напряжения и тока.

Раздел 7. Источники бесперебойного питания

Общие сведения об ИБП, классификация. Основные схемные решения.

Раздел 8. Источники электроснабжения

Основные требования, предъявляемые к источникам электроснабжения. Классификация источников электроснабжения.

Раздел 9. Химические источники тока

Классификация ХИТ. Основные типы аккумуляторов. Показатели качества ХИТ.

Устройство, основные характеристики, расчет режимов работы.

Раздел 10. СЭП телекоммуникационных систем. Направления развития СЭП

Назначение и классификация СЭП. Построение модульных ЭПУ с бестрансформаторным входом. Выбор частоты преобразования. Повышение надежности СЭП.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.24 Схемотехническое проектирование функциональных узлов приёмопередающих устройств

Цели освоения дисциплины

Целью преподавания дисциплины «Схемотехническое проектирование функциональных узлов приёмо-передающих устройств» является:

изучение принципов построения и расчета функциональных узлов приемопередающих устройств.

Место дисциплины в структуре ОП

Дисциплина «Схемотехническое проектирование функциональных узлов приёмопередающих устройств» Б1.В.24 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Схемотехническое проектирование функциональных узлов приёмо-передающих устройств» опирается на знании дисциплин(ы) «Схемотехника»; «Теория электрических цепей»; «Теория электрической связи».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен проводить расчеты по проекту сетей, сооружений и средств инфокоммуникаций в соответствии с техническим заданием с использованием как стандартных методов, приемов и средств автоматизации проектирования, так и самостоятельно создаваемых оригинальных программ (ПК-22)
- Способен осуществлять подготовку типовых технических проектов и первичный контроль соответствия разрабатываемых проектов и технической документации на различные инфокоммуникационные объекты национальным и международным стандартам и техническим регламентам (ПК-23)

Содержание дисциплины

Раздел 1. Введение

Задачи и этапы схемотехнического проектирования. Принципы проектирование радиоэлектронных устройств. Основные функциональные узлы приемопередающих устройств.

Раздел 2. Генераторы с внешним возбуждением

Принципы построения мощных высокочастотных усилителей, режимы работы. Цепи питания, стабилизация режима. Принципы расчета усилителей мощности. Умножители частоты.

Раздел 3. Согласующие цепи

Входные и выходные цепи согласования. Узкополосные и широкополосные цепи согласования. Учет потерь в СЦ. Фильтрация высших гармоник. Проектирование согласующих трансформаторов.

Раздел 4. Сложение мощностей

Способы сложения мощностей. Двухтактные усилители. Мостовые усилители.

Раздел 5. Входные цепи радиоприемных устройств. Усилители РЧ и ПЧ.

Построение входных цепей РПрУ различного назначения. Принципы построения и расчета УРЧ и УПЧ.

Раздел 6. Автогенераторы

Принципы построения автогенераторов. Стабилизация частоты. Управление частотой автогенераторов.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.25 Основы компьютерного проектирования устройств вещания

Цели освоения дисциплины

Целью преподавания дисциплины «Основы компьютерного проектирования устройств вещания» является:

изучение методов компьютерного проектирования и анализа работы основных узлов устройств вещания.

Место дисциплины в структуре ОП

Дисциплина «Основы компьютерного проектирования устройств вещания» Б1.В.25 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Основы компьютерного проектирования устройств вещания» опирается на знании дисциплин(ы) «Схемотехника»; «Схемотехническое проектирование функциональных узлов приёмо-передающих устройств»; «Электроника».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций:

В соответствии с ФГОС:

- Способен проводить расчеты по проекту сетей, сооружений и средств инфокоммуникаций в соответствии с техническим заданием с использованием как стандартных методов, приемов и средств автоматизации проектирования, так и самостоятельно создаваемых оригинальных программ (ПК-22)
- Способен осуществлять подготовку типовых технических проектов и первичный контроль соответствия разрабатываемых проектов и технической документации на различные инфокоммуникационные объекты национальным и международным стандартам и техническим регламентам (ПК-23)

Содержание дисциплины

Раздел 1. Введение

Задачи компьютерного моделирования. Этапы компьютерного моделирования. Классификация математических моделей. Требования, предъявляемые к моделям.

Адекватность модели.

<u>Раздел 2. Программное обеспечение для компьютерного моделирования</u> Обзор пакетов прикладных программ для компьютерного моделирования. Сравнение их возможностей.

<u>Раздел 3. Моделирование компонентов радиоэлектронной аппаратуры</u> Классификация параметров РЭА. Виды анализа и расчета электронных средств.

Математические модели элементов и схем.Параметры моделей РЭУ. Входные сигналы для моделирования электронных средств.

Раздел 4. Базовые модели реальных компонентов электронных средств.

Модели пассивных компонентов электронных средств. Модели резистора, конденсатора, катушки индуктивности с учетом их паразитных параметров. Модель нелинейного трансформатора. Модель длинной линии.

Раздел 5. Модели активных компонентов электронных схем

Модель идеального и реального диода. Модели биполярных транзисторов (малосигнальная модель, модель Эберса-Молла, модель Гуммеля-Пуна). Модели полевых транзисторов.

Раздел 6. Макромодель операционного усилителя.

Макромодель идеального операционного усилителя. Макромодель Бойла. Макромодель MPZ.

Раздел 7. Особенности моделирования функциональных узлов устройств вещания Моделирование высокочастотных усилителей на биполярных и полевых транзисторах. Моделирование схем на операционных усилителях. Моделирование автогенераторов. Оптимизация параметров.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.26 Распространение радиоволн и антенно-фидерные устройства

Цели освоения дисциплины

Целью преподавания дисциплины «Распространение радиоволн и антеннофидерные устройства» является:

изучение законов распространения радиоволн в природной среде и их влияние на радиосистемы, получение знании о типах и основных параметрах антенн, связи этих параметров с геометрическими характеристиками антенн и особенностями их использования в радиосистемах разного назначения.

Место дисциплины в структуре ОП

Дисциплина «Распространение радиоволн и антенно-фидерные устройства» Б1.В.25 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Распространение радиоволн и антенно-фидерные устройства» опирается на знании дисциплин(ы) «Техническая электродинамика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способность осуществлять мониторинг состояния и проверку качества работы, проведение измерений и диагностику ошибок и отказов телекоммуникационного оборудования, сетевых устройств, программного обеспечения инфокоммуникаций (ПК-4)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)

Содержание дисциплины

Раздел 1. Вводная часть.

Назначение дисциплины. Структура радиолинии. Основные определения.

Раздел 2. Распространение радиоволн (РРВ) в свободном пространстве.

Уравнение идеальной радиолинии. Учет рассеяния. Множитель ослабления. Зоны

Френеля. Размеры области, существенной для распространения радиоволн

Раздел 3. Распространение радиоволн над плоской земной поверхностью

Отражательная трактовка влияния земли. Приближенные граничные условия Леонтовича

- Щукина. Случай высокоподнятых антенн. Размеры области, существенной для отражения от земной поверхности. Интерференционная формула. Область осцилляций и

монотонного изменения напряженности электрического поля. Приближения для интерференционного множителя. Квадратичная формула Введенского.

Раздел 4. Учет сферичности земной поверхности

Расстояние прямой видимости. Приведенные высоты антенн в интерференционной формуле. Учет рассеяния, обусловленного сферичностью земли. Зоны освещенности, полутени и тени. Дифракционные формулы Фока. Распространение радиоволн над гладкой земной поверхностью при низкорасположенных антеннах. Формула Шулейкина - Ван-дер-Поля.

Раздел 5. Поляризация радиоволн

Поляризация волн. Распространение волн различных поляризаций над поверхностью земли. Граничные условия. Метод зеркальных изображений.

Раздел 6. Распространение тропосферных радиоволн.

Состав и параметры тропосферы. Вертикальный профиль индекса преломления тропосферы. Явление тропосферной рефракции, виды рефракции, её учёт при расчёте напряжённости поля. Эквивалентный радиус Земли.

Раздел 7. Распространение ионосферных волн

Основные параметры ионосферы. Регулярные слои электрической концентрации в ионосфере. Условия отражения радиоволн от ионосферы. Максимально применимая и критическая частоты.

Раздел 8. Космические линии связи.

Особенности распространения радиоволн в космических линиях связи. Потери в атмосфере. Особенности траектории распространяющейся волны. Дисперсионные искажения сигнала. Учет эффекта Доплера

Раздел 9. Потери на фиксированных радиолиниях.

Потери радиоволн в приземном слое атмосферы. Потери, вызванные растительностью. Потери в стенах зданий. Дифракционные потери. Учет дифракции на плоском экране, клине и цилиндре. Учет дифракционных потерь на фиксированных трассах. Учет многолучевости.

Раздел 10. Модели и особенности РРВ разных диапазонов

Модель РРВ декаметрового диапазона (коротких волн), диапазон рабочих частот, наименьшая применимая, максимально применимая и оптимальная рабочая частоты. Волновое расписание, зоны молчания, замирания на КВ, искажения сигналов. Модели и особенности РРВ гектометрового (СВ), километрового (ДВ) и мириаметрового (СДВ) диапазонов, области применения. Особенности РРВ на космических линиях связи (КЛС). Помехи радиоприему и их зависимость от частоты. Выбор частотного диапазона для космических линий связи. Влияние рефракции волн и доплеровского смещения частоты на работу КЛС. Расчет энергетики КЛС. РРВ ИК и оптического диапазонов. Плазма на КЛС.

Раздел 11. Общие характеристики антенн.

Определение и функции антенн. Входное сопротивление антенны, условие резонанса. Основные электрические и конструктивные параметры антенн. Частотные свойства. Изображение диаграммы направленности (ДН) в различных системах координат, определение ее параметров.

<u>Раздел 12. Основы теории антенн. Симметричный вибратор (СВ) в свободном пространстве.</u>

Распределение тока вдоль вибратора. Электромагнитное поле симметричного вибратора в режиме передачи в дальней зоне и функция направленности. Входное сопротивление, резонансная длина, укорочение, диапазонные свойства. Типы конструкций СВ, способы питания, симметрирующие устройства. Настройка в резонанс. СВ в режиме приема.

Максимальная мощность, выделяемая в нагрузке, по критерию отношения сигнал/шум. <u>Раздел 13. Связанные вибраторы. Несимметричный вибратор (НВ).</u>

Теория излучения системы двух связанных симметричных вибраторов. Метод наводимых ЭДС. Определение взаимных и наведенных сопротивлений. Практическое использование. Поле НВ, расположенного вблизи поверхности Земли. Метод зеркальных изображений, основные характеристики, типы конструкций, настройка в резонанс. Способы увеличения действующей длины НВ.

Раздел 14. Антенные решетки (АР).

Определение, классификация AP. Расчет напряженности поля линейной AP, функция и ДН, множитель решетки. Направленные свойства. Условия отсутствия побочных главных максимумов. Управление ДН AP изменением амплитудно-фазового распределения токов на элементах AP. Режимы излучения: поперечно-наклонный, осевой. Плоские AP. Фазированные AP, AP с частотным сканированием, AP в полосковом исполнении. Способы питания AP.

Раздел 15. Щелевые излучатели и волноводно-щелевые антенные решетки (ЩАР). Идеальный щелевой излучатель. Реальные щели в стенках волноводов. правила ориентации и расположения щелей в стенках волноводов. Направленные свойства, согласование щелей с нагрузками. Волноводно-щелевые антенные решетки, расположение щелей вблизи нагрузки.

Раздел 16. Апертурные антенны.

Определение, методика расчета основных параметров. Рупорные антенны, основные типы и геометрические параметры. Оптимальный размеры, направленные свойства, фазовый центр излучения. Достоинства и недостатки и способы их устранения. Зеркальные антенны, основные геометрические параметры однозеркальных антенн, направленные свойства, профили зеркал. Типы облучателей, способы устранения реакции зеркала на облучатель. Двухзеркальные антенны, методика расчета. Область применения. Линзовые антенны, геометрические параметры, направленные свойства.

Раздел 17. Использование антенн на радиолиниях разного назначения

Телевизионные антенны передающих телецентров: основные типы, способы питания. Приемные телевизионные антенны простого типа и систем коллективного приема. Многоканальные антенны. Антенны радиорелейных линий (РРЛ) прямой видимости и тропосферных РРЛ. Антенны для спутниковой и космической радиосвязи. Антенны с круговой поляризацией. Антенны базовых станций и абонентских терминалов систем мобильной радиосвязи.

Раздел 18. Антенны декаметровых (коротких) радиоволн.

Антенна КВ простого типа. Синфазная горизонтальная диапазонная антенна (СГД). Ромбическая антенна. Логопериодическая антенна.

<u>Раздел 19. Антенны гектометровых (СВ), километровых (ДВ), и мириаметровых (СДВ)</u> волн.

Средневолновые передающие вещательные антенны-мачты и антенны-башки с изолированным и заземленным основаниями. Антифединговые антенны. Системы заземления. Рамочные, Т и Гобразные приемные антенны диапазонов СВ, ДВ и СДВ. Передающие антенны ДВ и СДВ. Использование антенн СДВ с несколькими снижениями. Раздел 20. Миниатюризация антенн и проблема электромагнитной совместимости (ЭМС). Полосковые и микрополосковые антенны и антенные решетки. Область использования, перспективы развития. Сверхширокополосные, самоподобные антенны. Проблема ЭМС и пути ее решения. Способы подавления бокового излучения антенн, защитные экраны, компенсационные методы, использование адаптивных антенн. Развязка по поляризации.

Общая трудоемкость дисциплины

252 час(ов), 7 ЗЕТ

Форма промежуточной аттестации

Зачет, Экзамен

Б1.В.27 Электронные средства формирования и отображения видеоконтента

Цели освоения дисциплины

Целью преподавания дисциплины «Электронные средства формирования и отображения видеоконтента» является:

изучение методов формирования, передачи, воспроизведения и коррекции цифровых изображений.

Место дисциплины в структуре ОП

Дисциплина «Электронные средства формирования и отображения видеоконтента» Б1.В.27 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Электронные средства формирования и отображения видеоконтента» опирается на знании дисциплин(ы) «Введение в профессию»; «Физические основы формирования видеоконтента».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)

Содержание дисциплины

Раздел 1. Считывание и регистрация изображения

Методы формирования изображения в видеотракте Матрицы ПЗС и КМОП.

Раздел 2. Преобразование светсигнал

Воспроизведение ТВ изображения. Плоскопанельные ТВ устройства.

Раздел 3. Обработка цифрового изображения

Введение в цифровой аппарат, применяемый в цифровой обработке изображений

Раздел 4. Методы передачи видеосигнала, стандарты.

Интерфейсы передачи видеосигнала.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.28 Радиопередающие устройства в телерадиовещании

Цели освоения дисциплины

Целью преподавания дисциплины «Радиопередающие устройства в телерадиовещании» является:

изучение основных технических характеристик и принципов построения радиопередающих устройств (РПдУ), которые используются в телерадиовещании; изучение способов генерирования, формирования и усиления радиочастотных колебаний в радиопередатчиках для эфирного радио- и телевизионного вещания, а также типовых структурных и принципиальных схем радиопередатчиков цифрового и аналогового телерадиовещания; применяемых электронных приборов, а также основ расчета основных узлов радиопередатчиков, таких как ВЧ усилители мощности, возбудители, модуляторы и пр.

Место дисциплины в структуре ОП

Дисциплина «Радиопередающие устройства в телерадиовещании» Б1.В.28 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Радиопередающие устройства в телерадиовещании» опирается на знании дисциплин(ы) «Схемотехника»; «Схемотехническое проектирование функциональных узлов приёмо-передающих устройств»; «Теория электрических цепей»; «Теория электрической связи».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)

Содержание дисциплины

Раздел 1. Введение

Технические требования к радиопередающим устройствам. Классификация радиопередающих устройств. Принципы построения радиопередающих устройств. Частотный и энергетический план.

Раздел 2. Усилители мощности радиопередатчиков

Основные технические требования к тракту усиления мощности. Основные энергетические характеристики мощных каскадов передатчиков. Современные приборы для усилителей мощности. Классификация режимов работы генераторов с внешним возбуждением (ГВВ). Повышение энергетической эффективности усилителей мощности, ключевые режимы работы.

Раздел 3. Возбудители радиопередатчиков

Принципы построения возбудителей для РПдУ различного назначения, основные технические требования к возбудителям. Технические требования к синтезаторам частот. Принципы построения синтезаторов частоты (прямой и косвенный синтез частоты). Прямой цифровой синтез частоты. Принципы построения перестраиваемых генераторов. Раздел 4. Формирование радиосигналов в вещательных передатчиках.

Способы получения амплитудной, однополосной, частотной и фазовой модуляции в радиопередатчиках для телерадиовещания: энергетические характеристики, принципиальные схемы модуляторов, применение. Способы формирования СОFDM сигналов для цифрового телерадиовещания, квадратурные модуляторы.

Раздел 5. Передатчики для радиовещания.

Основные технические требования к РПдУ для радиовещания. особенности построения структурных схем радиовещательных передатчиков. Способы повышения энергетической эффективности радиовещательных передатчиков. Методы оценки качества формирования сигналов цифрового и аналогового радиовещания.

Раздел 6. Передатчики для телевизионного вещания.

Основные технические требования к РПдУ для телевизионного вещания. Особенности построения структурных схем аналоговых и цифровых телевизионных передатчиков. Методы измерения и оценки качества формирования сигналов цифрового и аналогового телевизионного вещания.

Общая трудоемкость дисциплины

180 час(ов), 5 ЗЕТ

Форма промежуточной аттестации

Экзамен. Курсовой проект

Б1.В.29 Радиоприемные устройства в телерадиовещании

Цели освоения дисциплины

Целью преподавания дисциплины «Радиоприемные устройства в телерадиовещании» является:

изучение студентами особенностей построения схем радиоприёмных устройств для цифровых телевизионных и радиовещательных сигналов.

Место дисциплины в структуре ОП

Дисциплина «Радиоприемные устройства в телерадиовещании» Б1.В.29 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Радиоприемные устройства в телерадиовещании» опирается на знании дисциплин(ы) «Распространение радиоволн и антенно-фидерные устройства»; «Схемотехника»; «Теория электрических цепей»; «Электроника».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)

Содержание дисциплины

Раздел 1. Введение. Основные виды и стандарты телерадиовещания.

Тенденции и перспективы совершенствования радиоприемных устройств телерадиовещания и систем мобильной связи. Направления комплексной микроминиатюризации радиоприемных устройств, развитие цифровых методов обработки сигналов и управления приемниками. Научные и практические проблемы дальнейших исследований и разработок.

<u>Раздел 2. Структура и технические показатели радиоприемных устройств телерадиовещания.</u>

Чувствительность радиоприемника. Связь чувствительности с шумовыми характеристиками тракта: шумовой температурой и коэффициентом шума. Принципы построения высокочувствительных приемников. Частотная избирательность радиоприемника. Характеристика односигнальной избирательности, избирательность по соседнему и дополнительным каналам приема. Методы улучшения избирательности приемника. Понятие многосигнальной избирательности. Верность воспроизведения сообщений в приемнике.

Раздел 3. Линейные и нелинейные искажения в приемниках. Параметры многосигнальной избирательности.

Линейные искажения сигнала в частотно-избирательном тракте приемника. Нелинейные искажения, обусловленные высоким уровнем сигнала и внеполосных помех: насыщение и искажения огибающей, блокирование и перекрестная модуляция, интермодуляционные искажения. Количественная оценка этих эффектов параметры IP2 и IP3. Параметры многосигнальной избирательности многокаскадной структуры. Методы построения высоколинейных приемных трактов.

<u>Раздел 4. Радиочастотные тракты тюнеров телерадиовещания. Входные устройства радиоприемников</u>

Назначение входных устройств, их классификация и технические показатели. Обобщенная схема входного устройства и ее анализ. Коэффициент передачи и избирательность входного устройства. Оптимизация параметров входного устройства. Особенности входных цепей радиоприемников систем радиосвязи СВЧ диапазона.

Раздел 5. Усилители в радио-и телевизионных приемных устройствах.

Назначения и основные требования, предъявляемые к усилителям в радиоприемных устройствах. Теория избирательного усилителя: коэффициент усиления и избирательность, оптимизация параметров. Влияние внутренней обратной связи на работу резонансного усилителя, устойчивость.

Раздел 6. Преобразователи частоты и супергетеродинный прием

Структура, принцип действия и виды преобразователей частоты. Основы квазилинейной теории преобразования частоты. Диодные преобразователи частоты: виды, режимы работы, коэффициент передачи и коэффициент шума. Транзисторные преобразователи частоты: схемы, выбор режима работы. Дополнительные каналы приема и интерференционные свисты, способы их ослабления. Балансные и кольцевые преобразователи частоты. Фазовое подавление зеркального канала. Выбор промежуточной частоты приемника. Приемники с многократным преобразованием частоты

Раздел 7. Назначение и основные требования к детекторам.

Схема и принципы работы амплитудных детекторов нелинейного и синхронного типов. Нелинейные искажения в амплитудном детекторе. Фазовые детекторы: типы, схемы, принцип действия. Частотные детекторы: принципы работы и схемы, используемые в современной аппаратуре. Детектирование цифровых сигналов.

Раздел 8. Методы модуляции цифровых сигналов телерадиовещания. Демодуляторы телерадиовещательных сигналов. Передача сигналов цифрового телевидения по каналам связи.

Цифровая частотная модуляция или частотная манипуляция. Цифровая фазовая модуляция. Квадратурная фазовая манипуляция. Обратный процесс демодуляции. Многопозиционная фазовая манипуляция. Ортогональное частотное мультиплексирование. Семейство стандартов DVB, транспортный поток DVB. Структура спутникового линейного тракта передачи ЦТВ.

Раздел 9. Эффективность и помехоустойчивость систем телерадиовещания. Помехоустойчивое кодирование и преобразование структуры данных (относительное кодирование, скремблирование, перемежение).

Помехоустойчивое кодирование передаваемой информации. Одиночные ошибки и пакетные ошибки. Использование псевдослучайных последовательностей (ПСП) при скремблировании. Корректирующие коды. ВСН-коды - коды Рида-Соломона. Сверточные (решетчатые) коды. Принципы кодирования-декодирования звука и изображений. Ограничение доступа к программам телерадиовещания.

Раздел 10. Регулировки в приемниках. Системы управления приемниками Радиоприем на сверхвысоких частотах.

Назначение и основные виды ручных и автоматических регулировок в приемниках. Регулировка усиления, схемы регулируемых каскадов. Система автоматической регулировки усиления. Принципы перестройки приемников по частоте. Системы частотной и фазовой автоподстройки частоты в приемниках. Синтезаторы частот в качестве источника гетеродинного напряжения. Синтезаторы частот на основе систем фазовой автоподстройки и прямого цифрового синтеза. Применение цифровых и микропроцессорных устройств в системах управления приемниками.

Раздел 11. Особенности радиоприемных устройств различного назначения. Особенности приема цифровых сигналов с частотной и фазовой манипуляцией. Прием многопозиционных радиосигналов (ФМ-4, ФМ-8, АФМ-16 и др.). Методы восстановления несущей в приемники. Приемники телевизионных сигналов. Приемники спутникового телевизионного вещания. Сотовые системы наземного телевизионного вещания.

Раздел 12. Цифровая обработка сигналов в радиоприемных устройствах

Основные преимущества ЦОС при радиоприеме. Структуры радиоприемных устройств с оцифровкой сигнала в основной полосе и с оцифровкой сигнала на радио или промежуточной частоте. Современное состояние техники высокоскоростных АЦП. Перенос спектра при оцифровке сигнала, децимация цифрового потока, цифровая фильтрация. Построение цифровых демодуляторов. Использование ПЛИС и сигнальных процессоров при цифровой обработке радиосигналов. Особенности реализации интегрированных приёмников-декодеров на основе комплектов специализированных СБИС.

<u>Раздел 13. Заключение. Тенденции и перспективы совершенствования радиоприемных устройств телерадиовещания</u>

Тенденции и перспективы совершенствования радиоприемных устройств телерадиовещания.

Общая трудоемкость дисциплины

180 час(ов), 5 ЗЕТ

Форма промежуточной аттестации

Б1.В.30 Звуковое оборудование и аппаратно-программные средства медиаиндустрии

Цели освоения дисциплины

Целью преподавания дисциплины «Звуковое оборудование и аппаратнопрограммные средства медиаиндустрии» является:

изучение студентами принципов проектирования конструкций и теории электроакустических преобразователей (громкоговорителей, акустических систем, микрофонов, головных телефонов и др.); основныхметодов и средств электроакустических измерений, в том числе современных цифровых метрологических станций, обеспечивающих измерения в незаглушенных помещениях; способов измерения и оценки акустических характеристик и качества звучания в различных помещениях.

Место дисциплины в структуре ОП

Дисциплина «Звуковое оборудование и аппаратно-программные средства медиаиндустрии» Б1.В.30 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Звуковое оборудование и аппаратно-программные средства медиаиндустрии» опирается на знании дисциплин(ы) «Звуковое вещание»; «Иностранный язык»; «Метрология, стандартизация и сертификация»; «Теория вероятностей и математическая статистика»; «Теория электрических цепей»; «Физические основы акустики»; «Формирование и обработка звуковых сигналов»; «Цифровая обработка сигналов».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)
- Способен к администрированию процесса оценки производительности и контроля использования и производительности сетевых устройств, программного обеспечения информационно-коммуникационной системы (ПК-13)

Содержание дисциплины

Раздел 1. Электромеханоакустические системы

Метод электромеханических аналогий. Особенности электромеханических аналогий. Механические системы. Акустические колебательные системы. Трансформация в механических и акустических системах. Типы электромеханических преобразователей (электродинамические, электростатические).

Раздел 2. Микрофоны

Технические характеристики микрофонов. Микрофон как электромеханический преобразователь. Микрофон как приемник звука. Приемники давления. Приемник градиента давления (ленточный микрофон). Акустически комбинированные приемники. Электрически комбинированные приемники. Линейная группа микрофонов.

Раздел 3. Головки громкоговорителей

Общие сведения о громкоговорителях. Принцип действия и устройство головок громкоговорителей электродинамических прямого излучения. Основные параметры электродинамических головок громкоговорителя (номинальная мощность, модуль полного электрического сопротивления, среднее стандартное звуковое давление, частотная характеристика, направленность излучения, коэффициент полезного действия). Демпфирование громкоговорителя.

Раздел 4. Рупорные громкоговорители

Рупорные излучатели. Согласование характеристик. Акустическая трансформация. Устройство и эквивалентная схема рупоров. Форма рупоров. частотная характеристика звукового давления рупорного громкоговорителя. Направленность рупорного громкоговорителя. Типы рупорных громкоговорителей.

Раздел 5. Акустическое оформление громкоговорителей

Назначение акустического оформления громкоговорителей. Акустический экран. Ящик с открытой и закрытой задней стенкой. Влияние формы ящика на частотную характеристику акустической системы. Фазоинвертор. Пассивный излучатель. Акустический лабиринт. Совместная работа нескольких головок громкоговорителей. Фазировка головок громкоговорителей. Корпус акустической системы. Влияние колебаний стенок и внутреннего объема корпуса на характеристики акустической системы. Вибро- и звукопоглощающие покрытия.

Раздел 6. Многополосные акустические системы

Двухполосные акустические системы. Трехполосные акустические системы. Выбор головок громкоговорителей для многополосных акустических систем. Согласование чувствительности головок громкоговорителей. Влияние положения громкоговорителей в корпусе акустической системы. Требования к разделительным фильтрам акустических систем. Типы разделительных фильтров. Влияние разделительных фильтров на характеристики акустических систем. Активные разделительные фильтры. Коррекция амплитудно-частотных характеристик акустических систем.

Раздел 7. Головные стереотелефоны

Основные характеристики стереофонических головных телефонов. Основные элементы конструкции стереотелефонов. Типы и системы стереотелефонов. Телефоны электродинамической системы. Электростатически головные телефоны. Применение головных телефонов.

Раздел 8. Параметры качества электроакустического оборудования

Основные виды искажений в акустических системах. Линейные искажения (амплитудночастотные искажения; фазочастотные искажения; переходные искажения). Нелинейные

искажения (гармонические искажения; интермодуляционные искажения). Характеристика направленности акустических систем. Акустическая мощность. Искажение динамического диапазона. Электрические мощности. Полное электрическое сопротивление. Распроложение громкоговорителей в помещении прослушивания. Раздел 9. Измерения параметров электроакустического оборудования Применение цифровой обработки сигналов в технике измерений электроакустического оборудования. Методы измерений и нормы параметров качества микрофонов: номинального диапазона частот; чувствительности; динамического диапазона; уровня предельного звукового давления. Калибровка микрофонов. Методы измерений и нормы параметров качества акустических систем: добротности головки громкоговорителя; эффективного рабочего диапазона частот; полного коэффициента гармонических искажений; неравномерности частотной характеристики звукового давления. Параметры качества стереофонических систем. Пространственные искажения звуковой панорамы. Раздел 10. Акустические измерения в помещениях

Акустические измерения в помещениях. Контроль уровня записываемой программы по индикатору уровня. Методы измерения стандартного времени реверберации. Измерение параметров акустического качества помещений. Измерение уровня звукового давления, эквивалентного уровня звукового давления, уровня звукового воздействия.

Общая трудоемкость дисциплины

216 час(ов), 6 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.31 Волоконно-оптические системы связи транспортных сетей

Цели освоения дисциплины

Целью преподавания дисциплины «Волоконно-оптические системы связи транспортных сетей» является:

получение знаний, умений и навыков в области в области оптической связи и оптоэлектронных технологий, а также приборов и устройств оптоэлектроники и фотоники, используемых в оптических транспортных сетях, получение навыков теоретических исследований, умения работать с технической литературой и специальной измерительной аппаратурой.

Место дисциплины в структуре ОП

Дисциплина «Волоконно-оптические системы связи транспортных сетей» Б1.В.31 является дисциплиной часть, формируемая участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Волоконно-оптические системы связи транспортных сетей»

опирается на знании дисциплин(ы) «Теория электрической связи»; «Физика».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способность осуществлять мониторинг состояния и проверку качества работы, проведение измерений и диагностику ошибок и отказов телекоммуникационного оборудования, сетевых устройств, программного обеспечения инфокоммуникаций (ПК-4)
- Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5)
- Способен осуществлять администрирование сетевых подсистем инфокоммуникационных систем и /или их составляющих (ПК-12)

Содержание дисциплины

Раздел 1. Принципы построения оптических систем передачи

Основные определения оптических систем передачи и оптических сетей. Структурные схемы волоконно-оптических систем передачи (ВОСП). Временное и спектральное уплотнение. Семейства технологий TDM (PDH, SDH, Ethernet) и WDM (CWDM, DWDM). Технология оптической транспортной сети ОТН.

<u>Раздел 2. Физические основы процессов распространения света в оптических волокнах</u> Геометрическая и волновая оптика. Поляризация света. Отражение и преломление света на границе раздела двух сред. Формулы Френеля, явление полного внутреннего отражения. Направляемые и вытекающие моды (лучи).

Раздел 3. Затухание в оптических волокнах

Затухание в оптическом волокне. Единицы измерения затухания. Собственные и дополнительные потери. Коэффициент затухания, его зависимость от длины волны. Окна прозрачности. Влияние затухания на длину регенерационного участка. Влияние затухания на минимальную длину сегмента сети.

Раздел 4. Многомодовые оптические волокна

Траектории лучей в ступенчатых и градиентных оптических волокнах. Понятие моды. Нормированная частота. Количество мод. Межмодовая дисперсия. Широкополосность. Равновесное распределение мод. Ввод излучения в оптическое волокно. Числовая апертура. Потери на вводе излучения. Влияние широкополосности на максимальную длину сегмента сети. Многомодовые волокна с усеченным степенным профилем. Рекомендация МСЭ G.651. Многомодовые волокна для высокоскоростных сетей.

Раздел 5. Одномодовые оптические волокна

Условие одномодового режима распространения излучения. Длина волны отсечки. Хроматическая дисперсия. Матери-альная и волноводная дисперсия. Длина волны нулевой дис-персии. Диаметр модового поля. Влияние хроматической дисперсии на длину регенерационного участка. Рекомендации МСЭ. Классификация и параметры современных одномодовых оптических волокон.

Раздел 6. Пассивные оптические компоненты

Особенности и параметры пассивных компонентов. Разъемные и неразъемные соединения

оптических волокон. Вносимые и возвратные потери в соединениях. Конструкции и параметры разъемных соединителей. Механические соединители. Оптические разветвители. Оптические интерференционные фильтры. Устройства WDM. Оптические изоляторы. Оптические аттенюаторы.

Раздел 7. Передающие устройства

Требования к передающим устройствам. Источники излучения. Светоизлучающие диоды, их параметры и конструкции. Спонтанная люминисценция. Лазерные диоды, их параметры и конструкции. Вынужденная люминисценция. Внутренняя и внешняя модуляция. Структурная схема передающего устройства. Виды модуляции оптического излучения. Современные форматы модуляции оптических сигналов, их представление на фазовой плоскости. Сигнальные созвездия. Модуляторы.

Раздел 8. Фотоприемные устройства

Фотодиоды, их параметры, конструкции, схемы включения. Лавинный фотодиод. Принципы приема оптических сигналов. Энергетический и когерентный прием. Структурные схемы энергетических и когерентных приемников оптического излучения. Источники шума в фотоприемных устройствах. Параметры фотоприемных устройств. Преимущества когерентного приема. Использование цифровой обработки сигналов в фотоприемных устройствах с когерентным приемом.

Раздел 9. Оптическое усиление и оптические усилители

Нелинейные явления, используемые для усиления оптических сигналов. Оптические усилители на основе волокон, легированных редкоземельными элементами. Оптические усилители на основе явления вынужденного комбинационного рассеяния. Принципы действия, параметры, структурные схемы оптических усилителей. Применение оптических усилителей. Особенности построения оптических усилителей различного назначения.

Раздел 10. Измерения параметров волоконно-оптических линейных трактов Задачи технической эксплуатации. Измерение основных параметров волоконно-оптических трактов с помощью оптических тестеров и рефлектометров. Плановые и аварийные измерения. Определение расстояний до мест повреждений и неоднородностей.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.32 Техника прикладных медиасистем

Цели освоения дисциплины

Целью преподавания дисциплины «Техника прикладных медиасистем» является:

изучение аппаратуры и технологий формирования, передачи и воспроизведения видео контента в устройствах прикладного назначения

Место дисциплины в структуре ОП

Дисциплина «Техника прикладных медиасистем» Б1.В.32 является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Техника прикладных медиасистем» опирается на знании дисциплин(ы) «Безопасность жизнедеятельности»; «Введение в профессию»; «Информатика»; «Компоненты электронной техники»; «Метрология, стандартизация и сертификация»; «Микропроцессорные устройства».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с $\Phi \Gamma OC$:

- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен осуществлять монтаж, наладку, настройку, регулировку, опытную проверку работоспособности, испытания и сдачу в эксплуатацию сооружений, средств и оборудования сетей (ПК-8)

Содержание дисциплины

Раздел 1. Принципы построения медиасистем прикладного назначения

Структурные схемы медиасистем прикладного назначения Воспроизводящие устройства прикладных медиасистем

Раздел 2. Информационные свойства прикладных медиасистем

Функциональные схемы промышленных ТВ систем Помехоустойчивость прикладных медиасистем

Раздел 3. Системы охранного видеонаблюдения

Аналоговые и цифровые СВН Оптические и кабельные линии связи. Витая пара.Wi-Fi Раздел 4. Прикладные медиасистемы для промышленности

Основные параметры медиасистем прикладного назначения Контроль качества изображения в прикладных медиасистемах

Раздел 5. Методы компрессии цифровых сигналов изображения

Адаптивная дискретизация и квантование цифровых сигналов изображения Устранение внутрикадровой, межкадровой и структурной избыточности.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Б1.В.33 Технологии производства медиаконтента и системы иммерсивной реальности

Цели освоения дисциплины

Целью преподавания дисциплины «Технологии производства медиаконтента и системы иммерсивной реальности» является:

Изучение методов производства медиаконтента и систем иммерсивной реальности

Место дисциплины в структуре ОП

Дисциплина «Технологии производства медиаконтента и системы иммерсивной реальности» Б1.В.ЗЗ является дисциплиной части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Изучение дисциплины «Технологии производства медиаконтента и системы иммерсивной реальности» опирается на знании дисциплин(ы) «Метрология, стандартизация и сертификация».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5)

Содержание дисциплины

<u>Раздел 1. Особенности восприятия 3D изображений зрительной системой, основные понятия стереоскопии.</u>

Базис стереонаблюдения, параллакс, стереопара, радиус стереовидения. Разрешающая способность по глубине, согласование параметров сцены с характеристиками зрительного аппарата наблюдателя. Глубина предэкранного и заэкранного пространства.

<u>Раздел 2. Методы формирования, передачи и воспроизведения стереоскопических (3D) изображений.</u>

Структурные схемы стереотелевизионных видеосистем. Аппаратура стереосъемки. Фото и видеорежимы. Методы воспроизведения изображений стереопары.

Раздел 3. Виртуальная реальность.

Создание виртуальной реальности. Устройства для просмотра виртуальной реальности.

Раздел 4. Дополненная и смешанная реальность.

Классификация AR систем. Способы создания дополненной реальности.

Общая трудоемкость дисциплины

216 час(ов), 6 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.ДВ.01.01 Мультисервисные сети

Цели освоения дисциплины

Целью преподавания дисциплины «Мультисервисные сети» является:

Изучение общих подходов к построению современных сетей связи, принципов взаимодействия использующихся технологий, сквозных решений для обеспечения качества обслуживания. Дисциплина «Мультисервисные сети» должна обеспечивать формирование фундамента подготовки студентов в области инфокоммуникаций, а также создавать необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана. Она должна способствовать развитию творческих способностей студентов, умению формулировать и решать задачи изучаемой специальности, умению творчески применять и самостоятельно повышать свои знания.

Место дисциплины в структуре ОП

Дисциплина «Мультисервисные сети» Б1.В.ДВ.01.01 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Метрология, стандартизация и сертификация»; «Основы защиты информации в телекоммуникационных системах».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1)
- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5)

Содержание дисциплины

<u>Раздел 1. Основные принципы построения современных инфокоммуникационных сетей.</u> <u>Эволюция технологий.</u>

Тенденции развития инфокоммуникаций. Услуги в инфокоммуникациях. Классификация сетевых технологий. Модели ISO/OSI, TCP/IP, NGN. Организации, стандартизирующие решения в области телекоммуникаций. Особенности построения и развития сетей связи в РФ.

<u>Раздел 2. Технология TCP/IP: протокол IP.</u>

IP версий 4 и 6. Адресация, распределение адресного пространства, распределение адресов, DNS, структура заголовков, алгоритм обработки пакета на узле.

Раздел 3. Маршрутизация в ІР-сетях

Понятие маршрутизации. Внешняя и внутренняя маршрутизация. Формирование таблиц маршрутизации. Понятие автономной системы. Типы маршрутизаторов. Принципы построения маршрутизаторов. Алгоритм Белмана-Форда. Алгоритм Дейстры. Понятие метрики. Основные протоколы маршрутизации: RIP, OSPF, IS-IS, BGP.

Раздел 4. Технологии уровня доступа

Эволюция Ethernet: от 10 Мбит/с к 10 Гбит/с. Особенности формирования кадра Ethernet: уровни LLC и MAC. Метод доступа CSMA/CD. Формат кадра Ethernet. Протокол ARP. Коммутаторы Ethernet: неуправляемые и управляемые. Требования к неблокирующему режиму работы коммутатора. Способы организации неблокирующего коммутатора. СКС для Ethernet: виды кабеля, разъемов, обжимка. Использование сетей PON для организации доступа абонентов. Использование существующей телефонной линии: xDSL, протокол PPP.

Раздел 5. Технологии транспортных сетей

Рабочая среда Е1. Формирование PDH. Технология SDH - формирование нагрузки, использование для организации магистрали. Понятие синхронизации. Технология ATM для построения транспортных сетей. Технология DWDM, принципы волнового мультиплексирования. Технология MPLS.

Раздел 6. Методы управления сетью

Функции транспортного уровня, управление трафиком на транспортном уровне. Протокол UDP. Протокол TCP. Установление соединения. Квитирование. Медленный старт. Алгоритм RED и его влияние на работу TCP. Версии TCP. Влияние протоколов

транспортного уровня на работу приложений. Управление сетевыми элементами.

Протокол SNMP. Маршрутизация как способ управления сетью.

Раздел 7. Беспроводные сети связи

Классификация беспроводных сетей. Беспроводные технологии доступа. Сотовые сети, особенности построения. Процедура идентификации абонента. Принципы организации беспроводных каналов на магистральных участках и в труднодоступных районах.

Беспроводные сети малого радиуса действия (основы сенсорных сетей).

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.ДВ.01.02 Системы цифровой звукозаписи

Цели освоения дисциплины

Целью преподавания дисциплины «Системы цифровой звукозаписи» является: изучение физических основ и современных форматов магнитной, оптической, магнитооптической и твердотельной технологий записи и воспроизведения сигналов.

Место дисциплины в структуре ОП

Дисциплина «Системы цифровой звукозаписи» Б1.В.ДВ.01.02 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Иностранный язык»; «Физические основы формирования видеоконтента»; «Формирование и обработка звуковых сигналов»; «Цифровая обработка сигналов».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1)

- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2) - Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5)

Содержание дисциплины

Раздел 1. Системы записи информации

Назначение и классификация систем звукозаписи. Развитие стандартов цифровой записи звука. Функциональная схема тракта аппаратуры звукозаписи. Комбинированный тракт на основе ИКМ и сигма-дельта модуляции. Общие характеристики цифровых трактов звукозаписи.

Раздел 2. Кодирование звуковых сигналов

Корректирующее кодирование. Кодовые ошибки. Обнаружение кодовых ошибок. Коды Рида — Соломона. Перемежение данных. Системы кодирования с перемежением. Маскировка ошибочных слов.

Раздел 3. Канальная модуляция

Самосинхронизация и окно детектирования. Последовательности с ограниченной длиной пробега. Канальное кодирование. Снижение уровня низкочастотных составляющих в спектре сигнала. Основные параметры канальной модуляции. Методы канальной модуляции. Метод записи «с возвращением к нулю». Методы записи «без возвращения к нулю». Двухфазные методы модуляции. Модуляция задержкой. Канальные коды (3РМ, 4/5, 2/3, 2/4, EFM, 8/10, EFMPlus, 17-PP, HDM-1).

Раздел 4. Оптическая запись информации

Физические основы оптической записи информации. Оптическое излучение и его свойства. Лазеры. Основные оптические элементы, используемые в системах. Технологии оптической записи. Рельефно-фазовая запись. Амплитудная запись. Воспроизведение оптической записи. Автофокусировка. Слежение за дорожкой. Система управления механизмом перемещения оптического блока. Сервосистема двигателя вращения диска. Стабилизация мощности светодиодного лазера. Выделение цифровых данных из считанного с оптического носителя сигнала. Система цикловой синхронизации. Форматы CD, SACD, DVD, BD.

Раздел 5. Цифровая магнитная запись информации

Физические основы цифровой магнитной записи. Запись с вертикальным намагничиванием. Запись с вертикальным и горизонтальным намагничиванием. Физика цифровой магнитной записи. Магнитные головки. Магнитные носители.

Многодорожечные цифровые магнитофоны стандарта DASH. Стереофонические магнитофоны стандарта DAT. Наклонно-строчечная запись. Многоканальные дисковые магнитофоны формата HDD.

Раздел 6. Магнитооптическая запись информации

Физические основы магнитооптической записи. Магнитооптический эффект. Форматы магнитооптической записи. Стереофоническая звукозапись по стандарту MD (MiniDisc). Структура минидиска. Основные характеристики формата MiniDisc.

Раздел 7. Твердотельные носители информации

Общие характеристики твердотельных накопителей. Ячейки памяти flash-накопителей. Основные архитектуры flash-SSD. Преимущества и недостатки SSD-накопителей в сравнении с HDD. Типы SSD-накопителей (flash-карты, компьютерные SSD-накопители,

USB flash-накопители, Flash-рекордеры, Flash-плееры MP3/MP4).

Раздел 8. Цифровые звуковые интерфейсы

Звуковой интерфейс AES3 (AES/EBU): формат данных и технические характеристики. Звуковой интерфейс S/PDIF: формат данных, соединительные линии интерфейса. Звуковой интерфейс AES10 (MADI). Организация потока данных, передаваемых через интерфейс. Формат субкадра. Формат передачи данных по каналу. Частота дискретизации и число передаваемых каналов. Электрические характеристики.

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

Б1.В.ДВ.02.01 Цифровое телерадиовещание в сетях беспроводного доступа

Цели освоения дисциплины

Целью преподавания дисциплины «Цифровое телерадиовещание в сетях беспроводного доступа» является:

изучение принципов передачи телерадиовещания в сетях беспроводного доступа, ознакомление с форматами и протоколами доставки контента в сетях радиодоступа.

Место дисциплины в структуре ОП

Дисциплина «Цифровое телерадиовещание в сетях беспроводного доступа» Б1.В.ДВ.02.01 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Компоненты электронной техники»; «Контроль качества в системах звукового вещания».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способен осуществлять развитие транспортных сетей и сетей передачи данных, включая сети радиодоступа, спутниковых систем, коммутационных подсистем и сетевых платформ (ПК-9)

Содержание дисциплины

Раздел 1. Форматы аудио и видео, передаваемых по сетям радиодоступа Развитие интернет телерадиовещания. Организация беспроводного доступа к абонентским терминалам. Стандарты цифрового телерадиовещания. Стандарты цифрового аудио-вещания. Требования к каналам связи.

Раздел 2. Протоколы предоставления абонентам сетей радиодоступа услуг телерадиовещания.

Пакетная передача данных. Семиуровневая передача ин-формации в открытых средах. Использование в сетях радио-доступа интернет-протокола. Протоколы передачи информации по радиоинтерфейсам и в транспортных сетях.

<u>Раздел 3. Технологии пакетного доступа в сетях Wi-Fi</u>

Стандарты радиодоступа семейства IEEE 802.X. Основные характеристики стандарта IEEE 802.11. Структура кадров. Структура радиоинтерфейса. Технология OFDM. Модуляционно-кодирующие схемы. Скорости передачи. Управление доступом к сети. Передача телерадиовещания в сетях Wi-Fi. Обеспечение качественных характеристик. Оценка пропуск-ной способности сетей Wi-Fi.

Раздел 4. Технологии пакетного доступа в сетях GERAN/UMTS

Пакетная передача данных в сетях GSM/UMTS. Технология GPRS. Структуры сетей, интерфейсы. Обеспечение качест-венных показателей. Технология HSDPA. Категории абонентской аппаратуры. Планирование сетей GSM/UMTS. Ис-пользование специализированных программных комплексов для планирования сетей GSM/UMTS.

<u>Раздел 5. Технологии пакетного доступа в сетях LTE/5G-NR</u>

Структура сетей LTE. Физические каналы. Классы трафика и их качественные характеристики. Технологии агрегации полос и МІМО. Оценка пропускной способности сетей LTE. Категории абонентской аппаратуры. Технология LWA. Пла-нирование сетей LTE. Переход к сетям радиодоступа 5-го поколения.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.ДВ.02.02 Методы измерения и тестирования в медиатехнологиях

Цели освоения дисциплины

Целью преподавания дисциплины «Методы измерения и тестирования в медиатехнологиях» является:

ознакомление слушателей с методами измерений и тестирований, при эксплуатации современного телекоммуникационного оборудования.

Место дисциплины в структуре ОП

Дисциплина «Методы измерения и тестирования в медиатехнологиях» Б1.В.ДВ.02.02 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как.

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способен осуществлять развитие транспортных сетей и сетей передачи данных, включая сети радиодоступа, спутниковых систем, коммутационных подсистем и сетевых платформ (ПК-9)

Содержание дисциплины

Раздел 1. Основные стандарты цифровых вещательных систем

Краткий обзор основных стандартов цифровых вещательных систем (DVB-T/T2/T2Lite, DVB-S/S2/S2X, DVB-C/C2, ATSC, DTMB, ISDB, IPTV).)

Раздел 2. Типовые схемы построения сетей

Краткий обзор типовых схем построения сетей

Раздел 3. Типы сигналов

Основные типы сигналов, применяемых в медиатехнологиях (SDI, ASI, IP)

Раздел 4. Конфигурация оборудования

Обзор телекоммуникационного оборудования, применяемого в медиатехнологиях. Конфигурирование устройств.

Раздел 5. Методы измерения и тестирования

Обзор методов измерений параметров оборудования. Тестирование каналов связи и систем в целом.

Общая трудоемкость дисциплины

144 час(ов), 4 ЗЕТ

Форма промежуточной аттестации

Экзамен

Б1.В.ДВ.03.01 Общая физическая подготовка

Цели освоения дисциплины

Целью преподавания дисциплины «Общая физическая подготовка» является: изучение и формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности.

Место дисциплины в структуре ОП

Дисциплина «Общая физическая подготовка» Б1.В.ДВ.03.01 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Физическая культура и спорт».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности (УК-7)

Содержание дисциплины

Раздел 1. Общая физическая и спортивная подготовка. Комплексное занятие Общая физическая и специальная физическая подготовка. Комплексное занятие. Техника безопасности на занятиях по ОФП. Методика проведения комплексного занятия; Простейшие методики самооценки двигательной активности и суточных энергетических затрат. Повышение функциональных возможностей. Развитие основных физических качеств. Специальные контрольные упражнения, тесты ВСФК «ГТО»

Раздел 2. Ускоренное передвижение и легкая атлетика

Ускоренное передвижение и легкая атлетика. Методика индивидуального подхода и применения средств для направленного развития отдельных физических качеств. Упражнения для развития скоростно-силовых качеств, силовой выносливости, быстроты.

Совершенствование техники бега. Прыжки и прыжковые упражнения

Раздел 3. Гимнастика и атлетическая подготовка

Гимнастика и атлетическая подготовка. Методы самоконтроля состояния здоровья, физического развития, функциональной подготовленности. Упражнения для развития ловкости, силы и силовой выносливости. Овладение техникой выполнения упражнений атлетической гимнастики

Раздел 4. Спортивные и подвижные игры

Спортивные и подвижные игры. Средства и методы мышечной релаксации в спорте. Основы методики организации судейства. Игры на месте, малоподвижные, подвижные, спортивные. Подвижные игры с использованием: общеразвивающих упражнений; прикладных упражнений; игровых заданий с элементами легкой атлетики, футбола, баскетбола, волейбола.

Раздел 5. Фитнес, функциональная тренировка

Фитнес, функциональная тренировка. Методы самооценки специальной физической и спортивной подготовленности. Воспитание необходимых физических качеств по видам и направлениям фитнеса

<u>Раздел 6. Жизненно необходимые умения и навыки. Профессионально-прикладная физическая подготовка</u>

Жизненно необходимые умения и навыки. Профессионально-прикладная физическая подготовка. Методики самостоятельного освоения отдельных элементов ППФП. Методика проведения производственной гимнастики с учетом заданных условий и характера труда. Совершенствование двигательных физических качеств, повышение функциональных возможностей. Формирование психической подготовленности

Общая трудоемкость дисциплины

328 час(ов),

Форма промежуточной аттестации

Зачет

Б1.В.ДВ.03.02 Адаптационная физическая подготовка

Цели освоения дисциплины

Целью преподавания дисциплины «Адаптационная физическая подготовка»

является:

максимально возможное развитие жизнеспособности человека, имеющего отклонения в состоянии здоровья и обеспечение оптимального режима функционирования двигательных возможностей, духовных сил, их гармонизацию для самореализации в качестве социально и индивидуально значимого субъекта.

Место дисциплины в структуре ОП

Дисциплина «Адаптационная физическая подготовка» Б1.В.ДВ.03.02 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Физическая культура и спорт».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности (УК-7)

Содержание дисциплины

Раздел 1. Общая физическая и спортивная подготовка. Комплексное занятие Общая физическая и специальная физическая подготовка. Комплексное занятие Техника безопасности на занятиях по ОФП. Методика проведения комплексного занятия; Простейшие методики самооценки двигательной активности и суточных энергетических затрат. Повышение функциональных возможностей. Развитие основных физических качеств

Раздел 2. Ускоренное передвижение и легкая атлетика

Ускоренное передвижение и легкая атлетика. Методика индивидуального подхода и применения средств для направленного развития отдельных физических качеств. Упражнения для развития скоростно-силовых качеств, выносливости, быстроты, гибкости с учетом данных контроля и самоконтроля. Совершенствование техники бега. Прыжки и прыжковые упражнения

Раздел 3. Гимнастика и атлетическая подготовка

Гимнастика и атлетическая подготовка. Методы самоконтроля состояния здоровья, физического развития, функциональной подготовленности. Дневник самоконтроля. Упражнения для развития ловкости, силы и выносливости. Овладение техникой выполнения упражнений атлетической гимнастики

Раздел 4. Спортивные и подвижные игры

Спортивные и подвижные игры. Средства и методы мышечной релаксации в спорте. Основы методики организации судейства. Игры на месте, малоподвижные, подвижные, спортивные (адаптивные формы). Подвижные игры с использованием: общеразвивающих упражнений; прикладных упражнений; игровых заданий с элементами легкой атлетики, футбола, баскетбола, волейбола с учетом данных контроля и самоконтроля Раздел 5. Фитнес, функциональная тренировка

Фитнес, функциональная тренировка. Методы самооценки специальной физической и спортивной подготовленности. Воспитание необходимых физических качеств по видам и направлениям фитнеса с учетом данных врачебного контроля. Индивидуальный выбор оздоровительных систем физических упражнений

<u>Раздел 6. Жизненно необходимые умения и навыки. Профессионально-прикладная</u> физическая подготовка

Жизненно необходимые умения и навыки. Профессионально-прикладная физическая подготовка. Методики самостоятельного освоения отдельных элементов ППФП. Методика проведения производственной гимнастики с учетом заданных условий и характера труда. Совершенствование двигательных физических качеств, повышение функциональных возможностей. Формирование психической подготовленности

Общая трудоемкость дисциплины

328 час(ов),

Форма промежуточной аттестации

Зачет

Б1.В.ДВ.03.03 Секции по видам спорта

Цели освоения дисциплины

Целью преподавания дисциплины «Секции по видам спорта» является: изучение и формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности

Место дисциплины в структуре ОП

Дисциплина «Секции по видам спорта» Б1.В.ДВ.03.03 является дисциплиной по выбору части, формируемой участниками образовательных отношений блока 1 учебного плана подготовки бакалавриата по направлению «11.03.02 Инфокоммуникационные технологии и системы связи». Исходный уровень знаний и умений, которыми должен обладать студент, приступая к изучению данной дисциплины, определяется изучением таких дисциплин, как «Физическая культура и спорт».

Требования к результатам освоения

Процесс изучения дисциплины направлен на формирование следующих компетенций: В соответствии с ФГОС:

- Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности (УК-7)

Содержание дисциплины

Раздел 1. Общая физическая и спортивно-техническая подготовка. Комплексное занятие Техника безопасности. Методика проведения комплексного занятия Простейшие методики самооценки двигательной активности и суточных энергетических затрат Раздел 2. Ускоренное передвижение и легкая атлетика

Методика индивидуального подхода и применения средств для направленного развития отдельных физических качеств. Упражнения для развития физических качеств, необходимых в избранном виде спорта

Раздел 3. Гимнастика и атлетическая подготовка

Методы самоконтроля состояния здоровья, физического развития, функциональной подготовленности. Упражнения для развития ловкости, силы и силовой выносливости Раздел 4. Спортивные и подвижные игры

Средства и методы мышечной релаксации в спорте. Основы методики организации судейства по избранному виду спорта. Овладение средствами спортивной тактики, техническими приемами в избранном виде спорта

Раздел 5. Фитнес, спортивная функциональная тренировка - «кроссфит»

Методы самооценки специальной физической и спортивной подготовленности по избранному виду спорта. Основные упражнения для тренировки по системе «кроссфит» Раздел 6. Жизненно необходимые умения и навыки. Профессионально-прикладная физическая подготовка

Методики самостоятельного освоения отдельных элементов ППФП. Методика проведения производственной гимнастики с учетом заданных условий и характера труда. Совершенствование двигательных физических качеств, повышение функциональных возможностей в избранном виде спорта

Общая трудоемкость дисциплины

328 час(ов),

Форма промежуточной аттестации

Зачет

3. Аннотации программ практик

производственной Б2.В.01.01(П) Технологическая (проектно-технологическая) практика

Цели проведения практики

Целью проведения практики «Технологическая (проектно-технологическая) практика» является: закрепление и углубление теоретических знаний; формирование и развитие профессиональных знаний; приобретение практических навыков; формирование компетенций, а также приобретение опыта самостоятельной профессиональной и научной деятельности, необходимых для последующей профессиональной деятельности.

Эта цель достигается путем решения следующих(ей) задач(и):

- закрепление на практике знаний и умений, полученных в процессе теоретического обучения;
- развитие профессиональных навыков;
- ознакомление с общей характеристикой объекта практики и правилами техники безопасности;

Место практики в структуре ОП

«Технологическая (проектно-технологическая) практика» Б2.В.01.01(П) входит в блок 2 учебного плана, который относится к части, формируемой участниками образовательных отношений, и является обязательной составной частью образовательной программы по направлению «11.03.02 Инфокоммуникационные технологии и системы связи».

«Технологическая (проектно-технологическая) практика» опирается на знания, полученные при изучении предшествующих дисциплин, а также на знания и практические навыки, полученные при прохождении практик(и) «Преддипломная практика».

Требования к результатам освоения

В процессе прохождения практики студент формирует и демонстрирует следующие компетенции:

- Способен осуществлять монтаж, наладку, настройку, регулировку, опытную проверку работоспособности, испытания и сдачу в эксплуатацию сооружений, средств и оборудования сетей (ПК-8)
- Способен осуществлять развитие транспортных сетей и сетей передачи данных, включая сети радиодоступа, спутниковых систем, коммутационных подсистем и сетевых платформ (ПК-9)
- Способен к сбору, обработке, распределению и контролю выполнения заявок на техподдержку оборудования с помощью инфокоммуникационных систем и баз данных (ПК-10)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)
- Способен осуществлять администрирование сетевых подсистем инфокоммуникационных систем и /или их составляющих (ПК-12)
- Способен к администрированию процесса оценки производительности и контроля использования и производительности сетевых устройств, программного обеспечения информационно-коммуникационной системы (ПК-13)
- Способен к администрированию средств обеспечения безопасности удаленного доступа (операционных систем и специализированных протоколов) (ПК-14)
- Способен к проведению регламентных работ на сетевых устройствах и программном обеспечении инфокоммуникационной системы (ПК-15)
- Способен проводить расчеты по проекту сетей, сооружений и средств инфокоммуникаций в соответствии с техническим заданием с использованием как стандартных методов, приемов и средств автоматизации проектирования, так и самостоятельно создаваемых оригинальных программ (ПК-22)
- Способен осуществлять подготовку типовых технических проектов и первичный контроль соответствия разрабатываемых проектов и технической документации на различные инфокоммуникационные объекты национальным и международным стандартам и техническим регламентам (ПК-23)

Содержание практики

Раздел 1. Работа под руководством преподавателя Разработка проекта технологической операции Раздел 2. Подготовка отчета Анализ результатов разработки

Общая трудоемкость дисциплины

216 час(ов), 6 ЗЕТ

Форма промежуточной аттестации

Зачет

производственной Б2.В.01.02(Н) Научно-исследовательская работа

Цели проведения практики

Целью проведения практики «Научно-исследовательская работа» является: закрепление и углубление теоретических знаний; формирование и развитие профессиональных знаний; приобретение практических навыков; формирование компетенций, а также приобретение опыта самостоятельной профессиональной и научной деятельности, необходимых для последующей профессиональной деятельности.

Эта цель достигается путем решения следующих(ей) задач(и):

- закрепление на практике знаний и умений, полученных в процессе теоретического обучения;
- развитие профессиональных навыков;
- ознакомление с общей характеристикой объекта практики и правилами техники безопасности;
- планирование исследования (выбор темы, обоснование необходимости, определение целей и задач, выдвижение гипотез, формирование программы, подбор средств и инструментария);
- проведение исследования (изучение литературы, сбор, обработка и обобщение данных, объяснение полученных результатов и новых фактов, аргументирование, формулировка выводов);
- оформление отчета о результатах исследования (изучение нормативных требований, формирование структуры и содержания, написание, редактирование, формирование списка использованных источников информации, оформление приложений);
- выступление с докладами на студенческих конференциях по результатам исследований.

Место практики в структуре ОП

«Научно-исследовательская работа» Б2.В.01.02(Н) входит в блок 2 учебного плана, который относится к части, формируемой участниками образовательных отношений, и является обязательной составной частью образовательной программы по направлению «11.03.02 Инфокоммуникационные технологии и системы связи».

«Научно-исследовательская работа» опирается на знания, полученные при

изучении предшествующих дисциплин, а также на знания и практические навыки, полученные при прохождении практик(и) «Преддипломная практика». Требования к результатам освоения В процессе прохождения практики студент формирует и демонстрирует следующие компетенции: - Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1) - Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2) - Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3) - Способность осуществлять мониторинг состояния и проверку качества работы, проведение измерений и диагностику ошибок и отказов телекоммуникационного оборудования, сетевых устройств, программного обеспечения инфокоммуникаций (ПК-4) - Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5) - Способен оценивать параметры безопасности и зашишать программное обеспечение и сетевые устройства администрируемой сети с помощью специальных средств управления безопасностью (ПК-6) - Способен к составлению аналитических отчетов на основе сбора, аналитического и численного исследования и построения прогнозов по продажам инфокоммуникационных систем и/или их составляющих (ПК-7) - Способен использовать полученные знания для освоения новых технологий в области развития телекоммуникационных сетей и систем, основных методов их анализа и синтеза $(\Pi K-43)$ Содержание практики Раздел 1. Работа под руководством преподавателя Исследование параметров и характеристик оборудования и сетей телекоммуникаций Раздел 2. Анализ результатов исследования Подготовка и защита научно-исследовательского отчета Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

учебной Б2.0.01.01(У) Ознакомительная практика

Цели проведения практики

Целью проведения практики «Ознакомительная практика» является: закрепление и углубление теоретических знаний; формирование и развитие профессиональных знаний; приобретение практических навыков; формирование компетенций, а также приобретение опыта самостоятельной профессиональной и научной деятельности, необходимых для последующей профессиональной деятельности.

Эта цель достигается путем решения следующих(ей) задач(и):

- закрепление на практике знаний и умений, полученных в процессе теоретического обучения;
- развитие профессиональных навыков;
- ознакомление с общей характеристикой объекта практики и правилами техники безопасности;

Место практики в структуре ОП

«Ознакомительная практика» Б2.О.01.01(У) входит в блок 2 учебного плана, который относится к обязательной части, и является обязательной составной частью образовательной программы по направлению «11.03.02 Инфокоммуникационные технологии и системы связи».

«Ознакомительная практика» опирается на знания, полученные при изучении предшествующих дисциплин.

Требования к результатам освоения

В процессе прохождения практики студент формирует и демонстрирует следующие компетенции:

- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде (УК-3)

Содержание практики

Раздел 1. Работа под руководством преподавателя Знакомство с предприятием Раздел 2. Оформление отчета Анализ данных,

Общая трудоемкость дисциплины

108 час(ов), 3 ЗЕТ

Форма промежуточной аттестации

Зачет

производственной Б2.0.02.01(Пд) Преддипломная практика

Цели проведения практики

Целью проведения практики «Преддипломная практика» является: закрепление и углубление теоретических знаний; формирование и развитие профессиональных знаний; приобретение практических навыков; формирование компетенций, а также приобретение опыта самостоятельной профессиональной и научной деятельности, необходимых для последующей профессиональной деятельности.

Эта цель достигается путем решения следующих(ей) задач(и):

- закрепление на практике знаний и умений, полученных в процессе теоретического обучения;
- развитие профессиональных навыков;
- ознакомление с общей характеристикой объекта практики и правилами техники безопасности;
- подбор необходимых материалов для выполнения выпускной квалификационной работы (или магистерской диссертации).

Место практики в структуре ОП

«Преддипломная практика» Б2.О.02.01(Пд) входит в блок 2 учебного плана, который относится к обязательной части, и является обязательной составной частью образовательной программы по направлению «11.03.02 Инфокоммуникационные технологии и системы связи».

«Преддипломная практика» опирается на знания и практические навыки полученные при изучении дисциплин и прохождении всех типов практик. «Преддипломная практика» является завершающей в процессе обучения и предшествует выполнению выпускной квалификационной работы.

Требования к результатам освоения

В процессе прохождения практики студент формирует и демонстрирует следующие компетенции:

- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)
- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни (УК-6)

Содержание практики

Раздел 1. Работа под руководством преподавателя

Работа на темой ВКР

Раздел 2. Подготовка пояснительной записки к ВКР

Работа на темой ВКР

Общая трудоемкость дисциплины

324 час(ов), 9 ЗЕТ

Форма промежуточной аттестации

Зачет

4. Аннотация программы ГИА

«Государственная итоговая аттестация»

Цели и задачи дисциплины

Целью государственной итоговой аттестации является определение соответствия результатов освоения студентами основной профессиональной образовательной программы высшего образования требованиям федерального

государственного образовательного стандарта (далее ФГОС ВО) по направлению подготовки (специальности) «11.03.02 Инфокоммуникационные технологии и системы связи», ориентированной на на следующие виды деятельности:.

Место дисциплины в структуре ОП

В соответствии с учебным планом государственная итоговая аттестация проводится в конце последнего года обучения. При условии успешного прохождения всех установленных видов итоговых аттестационных испытаний, входящих в итоговую государственную аттестацию, выпускнику присваивается соответствующая квалификация.

Требования к результатам освоения

Программа ГИА направлена на оценку результатов освоения обучающимися образовательной программы и степени овладения следующими профессиональными компетенциями (ПК): В соответствии с ФГОС:

- Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности (ОПК-1)
- Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных (ОПК-2)
- Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности (ОПК-3)
- Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-4)
- Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения (ОПК-5)
- Способен к развитию коммутационных подсистем и сетевых платформ, сетей передачи данных, транспортных сетей и сетей радиодоступа, спутниковых систем связи (ПК-1)
- Способен организовывать и проводить экспериментальные испытания с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов (ПК-2)
- Способен применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств инфокоммуникаций, использованию и внедрению результатов исследований инфокоммуникаций, использованию и внедрению результатов исследований (ПК-3)
- Способность осуществлять мониторинг состояния и проверку качества работы, проведение измерений и диагностику ошибок и отказов телекоммуникационного оборудования, сетевых устройств, программного обеспечения инфокоммуникаций (ПК-4)
- Способен осуществлять контроль использования и оценивать производительность сетевых устройств и программного обеспечения для коррекции производительности сетевой инфраструктуры инфокоммуникационной системы (ПК-5)

- Способен оценивать параметры безопасности и защищать программное обеспечение и сетевые устройства администрируемой сети с помощью специальных средств управления безопасностью (ПК-6)
- Способен к составлению аналитических отчетов на основе сбора, аналитического и численного исследования и построения прогнозов по продажам инфокоммуникационных систем и/или их составляющих (ПК-7)
- Способен осуществлять монтаж, наладку, настройку, регулировку, опытную проверку работоспособности, испытания и сдачу в эксплуатацию сооружений, средств и оборудования сетей (ПК-8)
- Способен осуществлять развитие транспортных сетей и сетей передачи данных, включая сети радиодоступа, спутниковых систем, коммутационных подсистем и сетевых платформ (ПК-9)
- Способен к сбору, обработке, распределению и контролю выполнения заявок на техподдержку оборудования с помощью инфокоммуникационных систем и баз данных (ПК-10)
- Способность осуществлять монтаж, настройку, регулировку тестирование оборудования, отработку режимов работы, контроль проектных параметров работы и испытания оборудования связи, обеспечение соответствия технических параметров инфокоммуникационных систем и /или их составляющих, установленным эксплуатационно-техническим нормам (ПК-11)
- Способен осуществлять администрирование сетевых подсистем инфокоммуникационных систем и /или их составляющих (ПК-12)
- Способен к администрированию процесса оценки производительности и контроля использования и производительности сетевых устройств, программного обеспечения информационно-коммуникационной системы (ПК-13)
- Способен к администрированию средств обеспечения безопасности удаленного доступа (операционных систем и специализированных протоколов) (ПК-14)
- Способен к проведению регламентных работ на сетевых устройствах и программном обеспечении инфокоммуникационной системы (ПК-15)
- Способен проводить расчеты по проекту сетей, сооружений и средств инфокоммуникаций в соответствии с техническим заданием с использованием как стандартных методов, приемов и средств автоматизации проектирования, так и самостоятельно создаваемых оригинальных программ (ПК-22)
- Способен осуществлять подготовку типовых технических проектов и первичный контроль соответствия разрабатываемых проектов и технической документации на различные инфокоммуникационные объекты национальным и международным стандартам и техническим регламентам (ПК-23)
- Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1)
- Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений (УК-2)
- Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде (УК-3)
- Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах) (УК-4)
- Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах (УК-5)
- Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни (УК-6)
- Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности (УК-7)

- Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов (УК-8)
- Способен принимать обоснованные экономические решения в различных областях жизнедеятельности (УК-9)
- Способен формировать нетерпимое отношение к проявлениям экстремизма, терроризма, коррупционному поведению и противодействовать им в профессиональной деятельности (УК-10)

Содержание

Подготовка и защита выпускной квалификационной работы

Общая трудоемкость дисциплины

216 час(ов), 6 ЗЕТ