# Лабораторные работы по курсу МАГНИТНЫЕ ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ

Лабораторная работа №1

# Исследование свойств катушки индуктивности с кольцевым ферритовым сердечником

#### 1. Цель работы

Моделирование электромагнитного процесса в цепи с помощью программы «Micro-Cap 11 Evaluation» (т.е. демонстрационной версии программы «Micro-Cap 11») для исследования влияния параметров сердечника на форму петли гистерезиса и другие параметры электромагнитного процесса.

#### 2. Задание на самостоятельную подготовку к работе

2.1. Изучите теоретические вопросы, связанные с анализом электромагнитного процесса в цепях, содержащих ферромагнитные (ферримагнитные) элементы.



Рис. 1. Катушка с тороидальным сердечником.

2.2. В соответствии со своим номером варианта выпишите значения параметров элементов исследуемой цепи (рис. 2).



Рис. 2. Схема исследуемой цепи.

2.3. Постройте математическую модель (систему уравнений), описывающую электромагнитный процесс в исследуемой цепи.

# **3. Исходные данные** (п – номер варианта)

Амплитуда напряжения источника гармонического напряжения (MODEL=1MHZ) равна 0.1 В (А=0.1), частота равна 100 кГц (F=100 kHz). Остальные параметры источника равны нулю.

Коэффициент управления ИТУН равен 1 (VALUE=1).

Число витков W обмотки катушки равно 10+n (INDACTANCE=W).

Средняя длина магнитной линии *l* в сердечнике равна 10+0.1n см (PATH=*l*).

Площадь S поперечного сечения сердечника равна 1 см<sup>2</sup> (AREA=1).

Тип сердечника – 3F3 (MODEL=3F3).

Коэффициент связи сердечника с обмоткой COUPLING=0.999.

# 4. Задание для работы в компьютерном классе

4.1. Загрузите программу «Micro-Cap 11 Evaluation».

4.2. Нарисуйте схему исследуемой цепи и введите параметры ее элементов согласно варианту. Для этого Вам понадобятся следующие четыре программных библиотечных элемента: источник гармонического напряжения (sine source), ИТУН (dependent source), катушка индуктивности (inductor) и сердечник (K).

При вводе в схему элемента одновременно вводятся и его параметры.

Замечание. Индуктивность катушки с сердечником определяется свойствами сердечника и числом витков катушки. Поэтому при вводе катушки с сердечником указывается не величина ее индуктивности, а число ее витков.

Например, если у катушки 10 витков, нужно ввести в окне ее параметров INDACTANCE=10.

При вводе источника гармонического напряжения (V1) задайте следующие параметры:

Таблица 1.

| Обозначение | Параметр                     | Размерность | Значение |
|-------------|------------------------------|-------------|----------|
| А           | Амплитуда                    | В           | 0.1      |
| DC          | Постоянная составляющая      | В           | 0        |
| F           | Частота                      | Гц          | 100k     |
| PH          | Начальная фаза               | рад         | 0        |
| RP          | Период затухания             | c           | 0        |
| RS          | Внутреннее сопротивление     | Ом          | 0        |
| TAU         | Постоянная времени затухания | c           | 0        |

Тогда его напряжение будет меняться по закону

$$u_0(t) = U_{m0} \cos \omega t = A \cos(2\pi f t)$$

Для пояснения смысла параметров RP и TAU на рисунке 3 показана форма напряжения источника «Sine Source» *в общем случае* (при RP≠0 и TAU≠0).



Рис. 3. Общий вид задающего напряжения источника «Sine Source» (RP=20 мкс и TAU=5 мкс).

При вводе источника тока, управляемого напряжением введите его коэффициент управления: VALUE = 1.

При вводе катушки индуктивности укажите число ее витков: INDACTANCE=10+n.

При вводе сердечника катушки необходимо указать материал сердечника и его габариты.

В качестве материала сердечника возьмите имеющийся в библиотеке программы «Micro-Cap 11 Evaluation » феррит марки 3F3: MODEL=3F3.

Феррит 3F3 – высокочастотный (используемый на частотах до нескольких мегагерц) марганцево-цинковый феррит фирмы Ferroxcube.

Его характеристики можно посмотреть на сайте производителя [1].

Для примера на рисунке 4 приведены параметры кольцевого сердечника TN32/19/13 из феррита 3F3 [2].



Effective core parameters

| SYMBOL         | PARAMETER        | VALUE            | UNIT             |
|----------------|------------------|------------------|------------------|
| Σ(I/A)         | core factor (C1) | 0.99             | mm <sup>-1</sup> |
| Ve             | effective volume | 5820             | mm <sup>3</sup>  |
| l <sub>e</sub> | effective length | 76               | mm               |
| A <sub>e</sub> | effective area   | 76.5             | mm <sup>2</sup>  |
| m              | mass of core     | <mark>≈29</mark> | g                |

Рис. 4. Геометрические параметры кольцевого сердечника TN32/19/13.

| SYMBOL         | CONDITIONS                 | VALUE     | UNIT              |
|----------------|----------------------------|-----------|-------------------|
| μ <sub>i</sub> | 25 °C; ≤10 kHz;<br>0.1 mT  | 2000 ±20% |                   |
| μ <sub>a</sub> | 100 °C; 25 kHz;<br>200 mT  | ≈4000     |                   |
| В              | 25 °C; 10 kHz;<br>250 A/m  | ≥400      | mT                |
|                | 100 °C; 10 kHz;<br>250 A/m | ≥330      |                   |
| P <sub>V</sub> | 100 °C; 100 kHz;<br>100 mT | ≤80       | kW/m <sup>3</sup> |
|                | 100 °C; 400 kHz;<br>50 mT  | ≤150      |                   |
| ρ              | DC; 25 °C                  | ≈2        | Ωm                |
| T <sub>C</sub> |                            | ≥200      | °C                |
| density        |                            | ≈4750     | kg/m <sup>3</sup> |

Рис. 5. Характеристики феррита 3F3.

В программе «Micro-Cap 11 Evaluation» для имитации ферромагнитного сердечника используется модель Джилса – Атертона.

Смысл параметров модели кольцевого сердечника виден из таблицы 2.

Таблица 2.

| Name | Parameter             | Units           | Default |                             |
|------|-----------------------|-----------------|---------|-----------------------------|
| AREA | Cross-sectional core  | cm <sup>2</sup> | 1       | Площадь поперечного сечения |
|      | area                  |                 |         | сердечника                  |
| PATH | Mean magnetic path    | cm              | 1       | Средняя длина магнитной     |
|      | length                |                 |         | линии                       |
| GAP  | Length of the air gap | cm              | 0       | Длина магнитного зазора     |
| MS   | Saturation            | Amp/m           | 400000  | Намагниченность насыщения   |
|      | magnetization         |                 |         |                             |
| А    | Shape parameter       | Amp/m           | 25      | Параметр формы              |
|      |                       |                 |         | безгистерезисной кривой     |
|      |                       |                 |         | намагничивания              |
| С    | Domain wall flexing   |                 | .001    | Постоянная упругого         |
|      | constant              |                 |         | смещения доменных границ    |
| K    | Domain wall pinning   |                 | 25      | Постоянная необратимых      |
|      | constant              |                 |         | деформаций доменных стенок  |

После указания материала сердечника (MODEL=3F3) автоматически загрузятся значения параметров его модели: MS, A, C и K.

Остается указать длину средней магнитной линии в сердечнике l, PATH=10+0.1\*n см и площадь его поперечного сечения S, AREA=1 см<sup>2</sup>.

Чтобы указать какой катушке принадлежит сердечник, и какова связь между ними, нужно при описании сердечника ввести имя катушки и указать коэффициент связи.

Например, если коэффициент связи катушки L1 с сердечником равен 0.999, нужно ввести в окне параметров сердечника INDUCTOR=L1 и COUPLING=0.999.

| 🛱 K:Mutual inductance / Nonlinear magnetics core model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Value           MODEL         Image: Show         Show         Image: Show | Change                                  |
| PART=K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BH                                      |
| MODELIORS-E1<br>MODELIORS-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MS>400K                                 |
| COST=<br>POWER=<br>SHAPEGROUP=Default<br>SIZE=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$GENERIC<br>387<br>3C81<br>3C85<br>3F3 |
| OK Cancel Font Add Delete Browse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| New Find Plot Syntax IBIS Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| I✔ Enabled I✔ Help Bar File Link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| Source: Local page 'Models'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C 52 01070M                             |
| A [24.031001 AREA ] 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L 22.01979M                             |
| GAP   U K   16.335376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ino 1969-949 (ak                        |
| PATH   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |

Рис. 6. Окно задания параметров сердечника катушки индуктивности.

4.3. Исследуйте влияние длины средней магнитной линии в сердечнике на форму петли гистерезиса.

Для этого сделайте расчет при двух значениях l: 10+0.1n см и 2(10+0.1n) см (в режиме «Stepping»). На первой странице выведите графики кривых B(H) и  $\Phi(i)$ , на второй странице - графики  $\Phi(t)$ , L(t) и U<sub>L</sub>(t) (т.е X(L1), L(L1), V(L1)). Приступите к анализу цепи (analysis) в переходном режиме (transient).

| Transient Analysis Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ;      |   |         |                        | 1              |                       |      |            |            | x |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|---------|------------------------|----------------|-----------------------|------|------------|------------|---|
| Run <u>A</u> dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Delete | 2 | Expand  | Stepping               | PSS            | Properties Help       | Ba 🕻 | <u>.</u>   |            |   |
| Time Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20u    |   |         | Run Options            | Normal         | •                     |      |            |            |   |
| Maximum Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0      |   |         | <u>S</u> tate Variable | es Zero        | <b>*</b>              |      |            |            |   |
| Number of Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10000  |   |         | Operating              | Point          | Accumulate Plots      |      |            |            |   |
| Temperature Linear 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27     |   |         | Operating              | Point Only     | Fixed Time Step       |      |            |            |   |
| Retrace Runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |   |         | Auto Scale             | e Ranges       | Periodic Steady State |      |            |            |   |
| Ignore Expression Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page   | P | X Expr  | ression                |                | Y Expression          |      | X Range    | Y Range    | > |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | 1 | HSI(L1) |                        | BSI(L1)        |                       |      | AutoAlways | AutoAlways | _ |
| Image: A state of the state | 2      | 1 | Т       |                        | X(L1)          |                       |      | AutoAlways | AutoAlways | _ |
| Image: A state of the state | 2      | 2 | Т       |                        | L <b>(</b> L1) |                       |      | AutoAlways | AutoAlways |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 3 | T       |                        | V(L1)          |                       |      | AutoAlways | AutoAlways |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |         |                        |                |                       |      |            |            |   |

Рис. 7. Окно задания параметров моделирования.

| Step What   | K1 PATH                                                   |
|-------------|-----------------------------------------------------------|
| List        | 10,20                                                     |
| То          |                                                           |
| Step Value  |                                                           |
| Step It     | C No C Linear C Log C List C Component C Model C Symbolic |
| Change      |                                                           |
| Step all vi | ariables simultaneously . Step variables in nested loops  |

Рис. 8. Окно задания параметров «Stepping» (здесь принято n=0).



Рис. 9. График кривых B(H) в режиме «Stepping» при двух разных средних длинах магнитных линий.



Рис. 10. Графики  $\Phi(t)$ , L(t) и U<sub>L</sub>(t) в режиме «Stepping» при двух разных средних длинах магнитных линий.

- 4.4. Повторите расчёт при *l*=10+0.1n и двух значениях S: 1 и 2 см<sup>2</sup>.
- 4.5. Повторите расчёт при *l*=10+0.1n см, S=1см<sup>2</sup> и двух значениях числа витков: W и 0.5W.
- 4.6. Сделайте выводы о влиянии *l*, S и W на B, H, Ф, L, U<sub>L</sub> катушки.

#### 5. Указания к защите

- 5.1 Отчет по лабораторной работе должен содержать:
  - Моделируемую схему
  - Графики B(H), Ф(i), Ф(t), L(t) и U<sub>L</sub>(t) согласно пунктам 4.3.-4.5.
  - Выводы о свойствах катушки, вытекающие из анализа полученных графиков. Физическое обоснование установленных свойств.
- 5.2. Контрольные вопросы
  - 1. Как связаны  $\vec{B}$  и  $\vec{H}$ ?
  - 2. Что такое относительная магнитная проницаемость µ?
  - 3. Что такое индукция насыщения B<sub>s</sub>, остаточная индукция B<sub>r</sub>?
  - 4. Какие ферромагнетики называются магнитотвёрдыми, а какие магнитомягкими?
  - 5. Что представляет собой ферриты? Чем они отличаются от металлических ферромагнетиков?

- 6. Что такое магнитодвижущая сила? Как выглядит закон полного тока применительно к однородному кольцевому сердечнику?
- 7. Что такое вебер-амперная характеристика?
- 8. Что такое эффективные параметры сердечника? (IEC60205)
- 9. Что такое основная кривая намагничивания?
- 10.Что такое начальная магнитная проницаемость µ<sub>i</sub>?
- 11.Как изменится процесс намагничивания, если источник гармонического тока заменить на источник гармонического напряжения?

# Лабораторная работа № 2

# Исследование свойств катушки с разомкнутым ферромагнитным сердечником

# 1. Цель работы

Моделирование электромагнитного процесса цепи с помощью программы «Micro-Cap 11 Evaluation» (т.е. демонстрационной версии программы «Micro-Cap 11») для исследования влияния зазора на характеристики катушки индуктивности. Убедиться, что источник гармонического напряжения с ИТУН можно заменить схемой Бушеро.

#### 2. Задание на самостоятельную подготовку к работе

2.1. Изучите теоретические вопросы, связанные с анализом и расчетом катушек с разомкнутым ферромагнитным сердечником. Выясните, какими свойствами обладают ферритовые сердечники с зазором.



Рис. 1. Катушка с разомкнутым сердечником.

W – число витков; S – площадь поперечного сечения; δ – величина зазора; l – средняя длина магнитной линии.

2.2. Выясните, как создается зазор в сердечниках разной формы.

#### **3. Исходные данные** (п – номер варианта)

Амплитуда напряжения источника гармонического напряжения (MODEL=1MHZ) равна 0.1 В (А=0.1), частота равна 100 кГц (F=100 kHz). Остальные параметры источника равны нулю.

Коэффициент управления ИТУН равен 1 (VALUE=1).

Число витков W обмотки катушки равно 10+n (INDACTANCE=W).

Средняя длина магнитной линии *l* в сердечнике равна 10+0.1n см (PATH=*l*).

Площадь S поперечного сечения сердечника равна 1 см<sup>2</sup> (AREA=1).

Тип сердечника – 3F3 (MODEL=3F3).

Коэффициент связи сердечника с обмоткой COUPLING=0.999.

Толщина  $\delta$  воздушного зазора 0, 0.005 и 0.01 см (GAP=  $\delta$ ).

#### 4. Задание для работы в компьютерном классе

- 4.1. Запустите программу «Micro-Cap 11 Evaluation».
- 4.2. Постройте на экране дисплея схему согласно рисунку 2.



Рис. 2. Схема моделируемой цепи (не забудьте «заземлить» схему)

Для этого Вам понадобятся следующие программные библиотечные компоненты: источник гармонического напряжения (sine source), источник тока управляемый напряжением (NT IofV), индуктивность (inductor), сердечник (К) и «земля» (ground).

Задайте следующие параметры источника гармонического напряжения (V1):

Таблица 1.

| Обозначение | Параметр                     | Размерность | Значение |
|-------------|------------------------------|-------------|----------|
| А           | Амплитуда                    | В           | 0,1      |
| DC          | Постоянная составляющая      | В           | 0        |
| F           | Частота                      | Гц          | 100k     |
| РН          | Начальная фаза               | рад         | 0        |
| RP          | Период затухания             | с           | 0        |
| RS          | Внутреннее сопротивление     | Ом          | 0        |
| TAU         | Постоянная времени затухания | c           | 0        |

В качестве материала сердечника трансформатора возьмите имеющийся в библиотеке программы «Micro-Cap 11 Evaluation» феррит марки 3F3. Феррит 3F3 – высокочастотный (используемый до нескольких мегагерц) марганцево-цинковый феррит фирмы Ferroxcube [1].

Обратите внимание, что вводимым параметром катушки (обмотки), *имеющей сердечник*, является *число ее витков* (а не величина ее индуктивности). Число витков катушки: W=10 + n, где n – это номер варианта.

Задайте следующие параметры сердечника (К1), соответствующие взятому для моделирования ферритовому кольцу (MODEL=3F3) с коэффициентом связи сердечника с обмоткой катушки равным 1 (COUPLING=0.999):

Таблица 2.

| Обозна | Параметр                               | Размер          | Значение |
|--------|----------------------------------------|-----------------|----------|
| чение  |                                        | ность           |          |
| AREA   | Площадь поперечного сечения сердечника | CM <sup>2</sup> | 1        |
| PATH   | Средняя длина магнитной силовой линии  | СМ              | 10+0.1n  |
| GAP    | Ширина воздушного зазора               | СМ              | 0        |

| MS | Намагниченность насыщения                             | А/м | 363.8987K  |
|----|-------------------------------------------------------|-----|------------|
| A  | Параметр формы безгистерезисной кривой намагничивания | А/м | 21.607291  |
| С  | Постоянная упругого смещения доменных границ          |     | 34.927959M |
| K  | Постоянная необратимых деформаций доменных стенок     | А/м | 16.07888   |

Задайте коэффициент управления ИТУН равным 1(VALUE=1).

4.3 Постройте график петли гистерезиса сердечника при отсутствии зазора и при зазоре равным 0.005 и 0.01 см на первой странице. На второй странице графики  $\Phi(t)$ , L(t), U<sub>L</sub>(t) (т.е. X(L1), L(L1), V(L1)).

Для того, чтоб вывести сразу три петли гистерезиса, то следует воспользоваться Stepping.

| 1 Stepping                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓ 1:K1.GAP       2:       3:       4:       5:       6:       7:       8:       9:       10:       11:       12:       13:       ▲         Step What       K1       ✓       GAP       ✓ |
| List         0,0.005,0.01           To                                                                                                                                                  |
| Step It     Method     Parameter Type            • Yes         • No           • Linear         • Log         • List           • Component         • Model         • Symbolic            |
| Change       O       Step all variables simultaneously       Image: Step variables in nested loops         All On       All Off       Default       OK       Cancel       Help          |
|                                                                                                                                                                                         |

Рис. 3. Окно многовариантного анализа (Stepping).

| 📰 Transient Analysis Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ts           |          |                 |                |                       |            | - 🗆        | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------|----------------|-----------------------|------------|------------|---|
| Run Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delete       | Expa     | and,,, Stepping | PSS            | Properties Help       | <b>b</b>   |            |   |
| Time Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10u          |          | Run Options     | Normal         | •                     |            |            |   |
| Maximum Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0            |          | State Variable  | es Zero        | •                     |            |            |   |
| Number of Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000       |          | Operating       | Point          | Accumulate Plots      |            |            |   |
| Temperature Linear 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27           |          | Operating       | Point Only     | Fixed Time Step       |            |            |   |
| Retrace Runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |          | Auto Scale      | e Ranges       | Periodic Steady State |            |            |   |
| Ignore Expression Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page         | P        | X Expression    |                | Y Expression          | X Range    | Y Range    | > |
| 💿 🔲 🔲 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            | 1 HSI(L1 | L)              | BSI(L1)        |                       | AutoAlways | AutoAlways |   |
| 📀 🔲 🔲 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2            | 1 T      |                 | X <b>(</b> L1) |                       | AutoAlways | AutoAlways |   |
| 📀 🔲 📄 📕 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2            | 2 T      |                 | L <b>(</b> L1) |                       | AutoAlways | AutoAlways |   |
| Image: A state of the state | 2            | 3 T      |                 | V <b>(</b> L1) |                       | AutoAlways | AutoAlways |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            |          |                 |                |                       | AutoAlways | AutoAlways | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>2</sup> |          |                 | J              |                       | J          | J          |   |

Рис. 4. Установки для расчета петли гистерезиса и графиков  $\Phi(t)$ , L(t), U<sub>L</sub>(t).

4.4. По кривым L(L1) для  $\delta = 0$  и  $\delta_3 = 0.01$  мм определите максимальные значения индуктивностей катушек. Т.к. без зазора  $L = \mu \mu_0 W^2 \frac{S}{l}$ , а с зазором  $L_3 = \mu_3 \mu_0 W_3^2 \frac{S}{l}$ . Можно увеличить число витков катушки с зазором, чтобы *L* и *L*<sub>3</sub> совпали:

$$\mu\mu_0 W^2 \frac{S}{l} = \mu_3 \mu_0 W_3^2 \frac{S}{l}$$
, а, следовательно,  $W_3^2 = \frac{\mu}{\mu_3} W^2 = \frac{\max L(L1)_{\delta=0}}{\max L(L1)_{\delta=0.01}} \cdot W^2$ .

Вычислите  $W_3$ . Определите, меняя  $U_{mo}$ , при каком токе  $I_{ml}$  исходная катушка ( $\delta$ =0) и катушка с зазором ( $\delta_3$ =0,01 и  $W_3$ ) насыщаются.

Для наблюдения насыщения катушки с W и W<sub>3</sub> добавьте последовательно к катушке ещё одну, т.е. схема будет содержать катушку с W и  $\delta$ =0 и катушку с W<sub>3</sub> и  $\delta$ <sub>3</sub>=0.01 см (рис. 7).



Рис. 5. Схема моделируемой цепи.

Выведите на страницу две петли гистерезиса и, меняя  $U_{mo}$  (т.е. ток), определите момент насыщения.

| Transient Analysis Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts     |   |         |                |                        |                       |   | -       | -    |     | ×   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|---------|----------------|------------------------|-----------------------|---|---------|------|-----|-----|
| Run Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delete |   | Expand, | Stepping.      | . PSS                  | Properties Help       | 6 |         |      |     |     |
| Time Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10u    | _ |         | Run Options    | Normal                 | •                     |   |         |      |     |     |
| Maximum Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0      | _ |         | State Variable | s Zero                 | •                     |   |         |      |     |     |
| Number of Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000 |   |         | Operating      | Point                  | Accumulate Plots      |   |         |      |     |     |
| Temperature Linear 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27     |   |         | Operating      | Point Only             | Fixed Time Step       |   |         |      |     |     |
| Retrace Runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |   |         | Auto Scale     | Ranges                 | Periodic Steady State |   |         |      |     |     |
| Ignore Expression Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page   | Ρ | X Expre | ession         |                        | Y Expression          |   | X Range | Y Ra | nge | >   |
| Image: A state of the state | 1      | 1 | HSI(L1) |                | BSI(L1)                |                       |   | Auto    | Auto |     | _   |
| 📀 🔲 🗐 📕 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1      | 2 | HSI(L2) |                | BSI(L2)                |                       |   | Auto    | Auto |     | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 1 | Т       |                | V <b>(</b> L1)         |                       |   | Auto    | Auto |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 2 | Т       |                | V <b>(</b> L2 <b>)</b> |                       |   | Auto    | Auto |     | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |         |                |                        |                       |   |         |      |     | - , |

Рис. 6. Окно многовариантного анализа (Stepping).

| 1 Stepping                       | ×                                                                                                                 |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ✓ 1:V1.A                         | 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: •                                                                         |
| Step What                        | V1 A -                                                                                                            |
| List                             | 1,5,10                                                                                                            |
| То                               | 20                                                                                                                |
| Step Value                       | 3                                                                                                                 |
| Step It -<br>• Yes               | O No     Method     Parameter Type       O Linear     O Log     List       O Component     O Model     O Symbolic |
| Change<br>C Step all v<br>All On | variables simultaneously    Step variables in nested loops  All Off Default OK Cancel Help                        |
|                                  |                                                                                                                   |

Рис. 7. Установки для расчета петли гистерезиса при насыщении катушки.

4.5. Убедитесь, что источник гармонического напряжения с ИТУН могут быть заменены схемой Бушеро, используйте схему из пункта 3.4. Постройте графики кривых B(H) и  $\Phi(i)$ , а также  $U_L(t)$ .



Рис. 8. Эквивалентная схема замещения источника гармонического напряжения с ИТУН (слева) схемой Бушеро (справа).

Значения L и C находятся из условия:

$$2\pi f = \frac{1}{\sqrt{LC}}$$
, где  $f = 100$  кГц

4.6. Сделайте выводы о влиянии зазора на характеристики сердечника и катушки.

#### 5. Указания к защите

5.1. Отчет должен содержать:

- моделируемую схему;
- графики величин, полученных в результате моделирования;
- выводы о влиянии зазора на характеристики сердечника и катушки.

5.2. Контрольные вопросы

- 1. С какой целью в сердечнике делают зазор?
- 2. Как распределяется энергия магнитного поля между ферримагнетиком сердечника (тело сердечника) и зазором?
- 3. Можно ли у катушки увеличить индуктивность, меняя число витков, если в её сердечнике сделать зазор?
- 4. Как рассчитать размагничивающий фактор у кольцевого сердечника с зазором?
- 5. Что такое размагничивающее поле?

# Лабораторная работа № 3

# Исследование нелинейных искажений, вносимых дросселем с ферромагнитным сердечником

# 1. Цель работы

Моделирование электромагнитного процесса цепи, содержащей дроссель (реактор, катушку индуктивности) с нелинейным гистерезисным ферромагнитным сердечником, для определения режимов работы цепи с малыми нелинейными искажениями.

#### 2. Задание на самостоятельную подготовку к работе

2.1. Изучите теоретические вопросы, связанные с анализом и расчетом катушек с разомкнутым ферромагнитным сердечником. Выясните, какими свойствами обладают ферритовые сердечники с зазором.



Рис. 1. Катушка с разомкнутым сердечником.

W – число витков; S – площадь поперечного сечения; δ – величина зазора; l – средняя длина магнитной линии.

2.2. Выясните, как создается зазор в сердечниках разной формы.

**3. Исходные данные** (п – номер варианта)

Амплитуда напряжения источника гармонического напряжения (MODEL=1MHZ) равна 0.1 В (А=0.1), частота равна 100 кГц (F=100 kHz). Остальные параметры источника равны нулю.

Коэффициент управления ИТУН равен 1 (VALUE=1).

Число витков W обмотки катушки равно 10+n (INDACTANCE=W).

Средняя длина магнитной линии *l* в сердечнике равна 10+0.1n см (PATH=*l*).

Площадь S поперечного сечения сердечника равна 1 см<sup>2</sup> (AREA=1).

Тип сердечника – 3F3 (MODEL=3F3).

Коэффициент связи сердечника с обмоткой COUPLING=0.999.

Толщина  $\delta$  воздушного зазора 0, 0.005 и 0.01 см (GAP=  $\delta$ ).

#### 4. Задание для работы в компьютерном классе

- 4.1. Запустите программу «Micro-Cap 11 Evaluation».
- 4.2. Постройте на экране дисплея схему согласно рисунку 2.



Рис. 2. Схема моделируемой цепи (не забудьте «заземлить» схему)

Для этого Вам понадобятся следующие программные библиотечные компоненты: источник гармонического напряжения (sine source), источник тока управляемый напряжением (NT IofV), индуктивность (inductor), сердечник (К) и «земля» (ground).

Задайте следующие параметры источника гармонического напряжения (V1):

Таблица 1.

| Обозначение | Параметр                     | Размерность | Значение |
|-------------|------------------------------|-------------|----------|
| А           | Амплитуда                    | В           | 0,1      |
| DC          | Постоянная составляющая      | В           | 0        |
| F           | Частота                      | Гц          | 100k     |
| PH          | Начальная фаза               | рад         | 0        |
| RP          | Период затухания             | с           | 0        |
| RS          | Внутреннее сопротивление     | Ом          | 0        |
| TAU         | Постоянная времени затухания | с           | 0        |

В качестве материала сердечника трансформатора возьмите имеющийся в библиотеке программы «Micro-Cap 11 Evaluation» феррит марки 3F3. Феррит 3F3 – высокочастотный (используемый до нескольких мегагерц) марганцево-цинковый феррит фирмы Ferroxcube [1].

Обратите внимание, что вводимым параметром катушки (обмотки), *имеющей сердечник*, является *число ее витков* (а не величина ее индуктивности). Число витков катушки: W=10 + n, где n – это номер варианта.

Задайте следующие параметры сердечника (К1), соответствующие взятому для моделирования ферритовому кольцу (MODEL=3F3) с коэффициентом связи сердечника с обмоткой катушки равным 1 (COUPLING=0.999):

Таблица 2.

| Обозна | Параметр                               | Размер          | Значение  |
|--------|----------------------------------------|-----------------|-----------|
| чение  |                                        | ность           |           |
| AREA   | Площадь поперечного сечения сердечника | CM <sup>2</sup> | 1         |
| PATH   | Средняя длина магнитной силовой линии  | СМ              | 10+0.1n   |
| GAP    | Ширина воздушного зазора               | СМ              | 0         |
| MS     | Намагниченность насыщения              | A/M             | 363.8987K |

| А | Параметр формы безгистерезисной кривой | А/м | 21.607291  |
|---|----------------------------------------|-----|------------|
|   | намагничивания                         |     |            |
| С | Постоянная упругого смещения доменных  |     | 34.927959M |
|   | границ                                 |     |            |
| К | Постоянная необратимых деформаций      | А/м | 16.07888   |
|   | доменных стенок                        |     |            |

Задайте коэффициент управления ИТУН равным 1(VALUE=1).

4.3 Постройте график петли гистерезиса сердечника при отсутствии зазора и при зазоре равным 0.005 и 0.01 см на первой странице. На второй странице графики  $\Phi(t)$ , L(t), U<sub>L</sub>(t) (т.е. X(L1), L(L1), V(L1)).

Для того, чтоб вывести сразу три петли гистерезиса, то следует воспользоваться Stepping.

| Stepping                | ×                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| ✓ 1:K1.GAP              | 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: •                                                                         |
| Step What               | K1 GAP 🗸                                                                                                          |
| List                    | 0,0.005,0.01                                                                                                      |
| То                      |                                                                                                                   |
| Step Value              |                                                                                                                   |
| Step It                 | O No     Method     Parameter Type       O Linear     O Log     List       O Component     O Model     O Symbolic |
| Change<br>C Step all va | riables simultaneously . Step variables in nested loops                                                           |
| All On                  | All Off Default OK Cancel Help                                                                                    |

Рис. 3. Окно многовариантного анализа (Stepping).

| 📰 Transient Analysis Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ts           |          |                 |                |                       |            | - 🗆        | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------|----------------|-----------------------|------------|------------|---|
| Run Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delete       | Expa     | and,,, Stepping | PSS            | Properties Help       | <b>b</b>   |            |   |
| Time Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10u          |          | Run Options     | Normal         | •                     |            |            |   |
| Maximum Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0            |          | State Variable  | es Zero        | •                     |            |            |   |
| Number of Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000       |          | Operating       | Point          | Accumulate Plots      |            |            |   |
| Temperature Linear 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27           |          | Operating       | Point Only     | Fixed Time Step       |            |            |   |
| Retrace Runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            |          | Auto Scale      | e Ranges       | Periodic Steady State |            |            |   |
| Ignore Expression Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page         | P        | X Expression    |                | Y Expression          | X Range    | Y Range    | > |
| 💿 🔲 🔲 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            | 1 HSI(L1 | L)              | BSI(L1)        |                       | AutoAlways | AutoAlways |   |
| 📀 🔲 🔲 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2            | 1 T      |                 | X <b>(</b> L1) |                       | AutoAlways | AutoAlways |   |
| 📀 🔲 📄 📕 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2            | 2 T      |                 | L <b>(</b> L1) |                       | AutoAlways | AutoAlways |   |
| Image: A state of the state | 2            | 3 T      |                 | V <b>(</b> L1) |                       | AutoAlways | AutoAlways |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            |          |                 |                |                       | AutoAlways | AutoAlways | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>2</sup> |          |                 | J              |                       | J          | J          |   |

Рис. 4. Установки для расчета петли гистерезиса и графиков  $\Phi(t)$ , L(t), U<sub>L</sub>(t).

4.4. По кривым L(L1) для  $\delta = 0$  и  $\delta_3 = 0.01$  мм определите максимальные значения индуктивностей катушек. Т.к. без зазора  $L = \mu \mu_0 W^2 \frac{S}{l}$ , а с зазором  $L_3 = \mu_3 \mu_0 W_3^2 \frac{S}{l}$ . Можно увеличить число витков катушки с зазором, чтобы *L* и *L*<sub>3</sub> совпали:

$$\mu\mu_0 W^2 \frac{S}{l} = \mu_3 \mu_0 W_3^2 \frac{S}{l}$$
, а, следовательно,  $W_3^2 = \frac{\mu}{\mu_3} W^2 = \frac{\max L(L1)_{\delta=0}}{\max L(L1)_{\delta=0.01}} \cdot W^2$ .

Вычислите  $W_3$ . Определите, меняя  $U_{mo}$ , при каком токе  $I_{ml}$  исходная катушка ( $\delta$ =0) и катушка с зазором ( $\delta_3$ =0,01 и  $W_3$ ) насыщаются.

Для наблюдения насыщения катушки с W и W<sub>3</sub> добавьте последовательно к катушке ещё одну, т.е. схема будет содержать катушку с W и  $\delta$ =0 и катушку с W<sub>3</sub> и  $\delta$ <sub>3</sub>=0.01 см (рис. 7).



Рис. 5. Схема моделируемой цепи.

Выведите на страницу две петли гистерезиса и, меняя  $U_{mo}$  (т.е. ток), определите момент насыщения.

| Transient Analysis Limi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts     |   |         |                |                        |                       |   | -       | -    |     | ×   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|---------|----------------|------------------------|-----------------------|---|---------|------|-----|-----|
| Run Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Delete |   | Expand, | Stepping.      | . PSS                  | Properties Help       | 6 |         |      |     |     |
| Time Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10u    | _ |         | Run Options    | Normal                 | •                     |   |         |      |     |     |
| Maximum Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0      | _ |         | State Variable | s Zero                 | •                     |   |         |      |     |     |
| Number of Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000 |   |         | Operating      | Point                  | Accumulate Plots      |   |         |      |     |     |
| Temperature Linear 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27     |   |         | Operating      | Point Only             | Fixed Time Step       |   |         |      |     |     |
| Retrace Runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |   |         | Auto Scale     | Ranges                 | Periodic Steady State |   |         |      |     |     |
| Ignore Expression Errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page   | Ρ | X Expre | ession         |                        | Y Expression          |   | X Range | Y Ra | nge | >   |
| Image: A state of the state | 1      | 1 | HSI(L1) |                | BSI(L1)                |                       |   | Auto    | Auto |     | _   |
| 📀 🔲 🗐 📕 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1      | 2 | HSI(L2) |                | BSI(L2)                |                       |   | Auto    | Auto |     | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 1 | Т       |                | V <b>(</b> L1)         |                       |   | Auto    | Auto |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      | 2 | Т       |                | V <b>(</b> L2 <b>)</b> |                       |   | Auto    | Auto |     | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |   |         |                |                        |                       |   |         |      |     | - , |

Рис. 6. Окно многовариантного анализа (Stepping).

| 1 Stepping                       | ×                                                                                                                 |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ✓ 1:V1.A                         | 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: •                                                                         |
| Step What                        | V1 A -                                                                                                            |
| List                             | 1,5,10                                                                                                            |
| То                               | 20                                                                                                                |
| Step Value                       | 3                                                                                                                 |
| Step It -<br>• Yes               | O No     Method     Parameter Type       O Linear     O Log     List       O Component     O Model     O Symbolic |
| Change<br>C Step all v<br>All On | variables simultaneously    Step variables in nested loops  All Off Default OK Cancel Help                        |
|                                  |                                                                                                                   |

Рис. 7. Установки для расчета петли гистерезиса при насыщении катушки.

4.5. Убедитесь, что источник гармонического напряжения с ИТУН могут быть заменены схемой Бушеро, используйте схему из пункта 3.4. Постройте графики кривых B(H) и  $\Phi(i)$ , а также  $U_L(t)$ .



Рис. 8. Эквивалентная схема замещения источника гармонического напряжения с ИТУН (слева) схемой Бушеро (справа).

Значения L и C находятся из условия:

$$2\pi f = \frac{1}{\sqrt{LC}}$$
, где  $f = 100$  кГц

4.6. Сделайте выводы о влиянии зазора на характеристики сердечника и катушки.

4.4. Исследуйте влияние величины коэффициента связи сердечника с катушками (CAUPLING или K1) на форму петли гистерезиса и кпд трансформатора при сопротивлении нагрузки равным 0.1 Ом.

Для этого сделайте расчет при двух значениях CAUPLING: 0.5 и 1, используя режим многовариантного анализа «Stepping».

Окно задания параметров моделирования трансформатора не меняйте.

| (1) Stepping           | e 🔀                                                        |
|------------------------|------------------------------------------------------------|
| ✓ 1:K1 2:              | :: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 1 <b></b>          |
| Step What              | K1 value                                                   |
| List                   | 1,0.5                                                      |
| То                     |                                                            |
| Step Value             |                                                            |
| Step It<br>• Yes       | C No C Linear C Log C List C Component C Model C Symbolic  |
| Change<br>C Step all v | variables simultaneously    Step variables in nested loops |
| All On                 | All Orr Derault OK Cancel Help                             |

Рис. 4. Окно задания параметров «Stepping» (К1=0.5 и 1).

#### 5. Указания к защите

- 5.1. Отчет должен содержать:
  - моделируемую схему;
  - графики величин, полученных в результате моделирования;
  - выводы о влиянии зазора на характеристики сердечника и катушки.
- 5.2. Контрольные вопросы
  - 6. С какой целью в сердечнике делают зазор?
  - 7. Как распределяется энергия магнитного поля между ферримагнетиком сердечника (тело сердечника) и зазором?
  - 8. Можно ли у катушки увеличить индуктивность, меняя число витков, если в её сердечнике сделать зазор?
  - 9. Как рассчитать размагничивающий фактор у кольцевого сердечника с зазором?
  - 10. Что такое размагничивающее поле?

# Лабораторная работа № 4

Исследование свойств двухобмоточного трансформатора на модели Джилса-Атертона с использованием программы «Micro-Cap 11 Evaluation »

# 1. Цель работы

С помощью программы «Micro-Cap 11 Evaluation» смоделировать двухобмоточный трансформатор с ферритовым сердечником. Исследовать на построенной модели свойства трансформатора.

# 2. Задание на самостоятельную подготовку к работе

2.1. Изучите теоретические вопросы, связанные с анализом и расчетом сетевых (гармонических) трансформаторов.

2.2. Выясните особенности работы трансформаторов в моменты включения и отключения входной сети.

2.3. Разберитесь, в чем состоят главные отличия свойств ферритовых и металлических ферромагнитных сердечников.

**3. Исходные данные** (п – номер варианта)

Амплитуда напряжения источника гармонического напряжения (назовите его MODEL=100kHz) равна 50 В (A=50), частота равна 100 кГц (F=100 kHz). Остальные параметры источника равны нулю.

Число витков первичной и вторичной обмоток трансформатора равно 1 (INDACTANCE=1).

Тип сердечника – 3F3 (MODEL=3F3). Параметры сердечника оставьте теми, которые заданы по умолчанию.

Коэффициент связи сердечника с обмоткой COUPLING=1.

# 4. Задание для работы в компьютерном классе

4.1. Запустите программу «Micro-Cap 11 Evaluation».

4.2. Постройте на экране дисплея схему согласно рисунку 1.

Для этого Вам понадобятся следующие программные библиотечные компоненты: источник гармонического напряжения (sine source), зависимый источник тока – источник тока, управляемый напряжением ИТУН (I of V), две катушки индуктивности (inductor L), сердечник (core K) и сопротивление (resistor R)

Обратите внимание, что вводимым параметром катушки, *имеющей сердечник*, является *число ее витков* (а не величина ее индуктивности). Не забудьте «заземлить» схему.



.DEFINE W(X) SUM(V(X)\*I(X),t)

Рис. 1. Схема моделируемой цепи (величина сопротивления R1 задана в Омах, а величины обмоток L1 и L2 – числом витков).

Текст под схемой – это «директива», задающая формулу вычисления энергии, поступающей в элемент Х.

$$W_x(t) = \int_0^t u_x(t)i_x(t)dt$$

Задайте следующие параметры источника гармонического напряжения (V1): Таблица 1.

| Обозначение | Параметр                     | Размерность | Значение |
|-------------|------------------------------|-------------|----------|
| А           | Амплитуда                    | В           | 50       |
| DC          | Постоянная составляющая      | В           | 0        |
| F           | Частота                      | Гц          | 100k     |
| PH          | Начальная фаза               | рад         | 0        |
| RP          | Период затухания             | c           | 0        |
| RS          | Внутреннее сопротивление     | Ом          | 0        |
| TAU         | Постоянная времени затухания | c           | 0        |

Вставьте в схему ИТУН с коэффициентом управления равным 1 (VALUE=1). Вставьте в схему две одновитковые катушки L1 и L2 (INDACTANCE=1).

В качестве сердечника трансформатора возьмите имеющийся в библиотеке программы «Micro-Cap 11 Evaluation » ферритовый сердечник марки 3F3. Укажите имена обмоток (через пробел), величину коэффициента связи и тип феррита.

INDUCTOR = L1 L2 (катушки, намотанные на этот сердечник);

COUPLING=1 (коэффициент связи между катушками);

MODEL= 3F3 (тип материала сердечника).

Таблица 2.

| Обозна | Параметр | Размер | Значение |
|--------|----------|--------|----------|
| чение  |          | ность  |          |

| AREA | Площадь поперечного сечения сердечника | CM <sup>2</sup> | 0.765      |
|------|----------------------------------------|-----------------|------------|
| PATH | Средняя длина магнитной силовой линии  | СМ              | 7.6        |
| GAP  | Ширина воздушного зазора               | СМ              | 0          |
| MS   | Намагниченность насыщения              | А/м             | 363.8987K  |
| А    | Параметр формы безгистерезисной кривой | А/м             | 21.607291  |
|      | намагничивания                         |                 |            |
| С    | Постоянная упругого смещения доменных  |                 | 34.927959M |
|      | границ                                 |                 |            |
| K    | Постоянная необратимых деформаций      | A/m             | 16.07888   |
|      | доменных стенок                        |                 |            |

Приступите к анализу цепи (analysis) в переходном режиме (transient). Время анализа установите равным 200 мкс (200и), т.е. равным 20 периодам напряжения источника.

4.3. Исследуйте влияние величины сопротивления нагрузки (R1) на форму петли гистерезиса и кпд трансформатора при коэффициенте связи равным 1. Для этого сделайте расчет при трех значениях R1: 0.1, 0.2 и 1 Ом, используя режим многовариантного анализа «Stepping».

Проконтролируйте форму токов и напряжений на обмотках.

| Transient Analysis Li      | imits  |         |                        |                   |                   |          |              |              | X |
|----------------------------|--------|---------|------------------------|-------------------|-------------------|----------|--------------|--------------|---|
| Run Add                    | Delete | Expand  | Stepping               | PSS               | Properties        | Help 🗈 💦 |              |              |   |
| Time Range                 | 200u   |         | Run Options            | Normal            | •                 |          |              |              |   |
| Maximum Time Step          | 0      |         | State Variables Zero 👻 |                   |                   |          |              |              |   |
| Number of Points           | 100000 | 100000  |                        | ✓ Operating Point |                   |          |              |              |   |
| Temperature Linear 💌       | 27     | 27      |                        | Point Only        | 🔲 Fixed Time Step |          |              |              |   |
| Retrace Runs               | 1      |         | 🔲 Auto Scal            | e Ranges          | Periodic Steady S | tate     |              |              |   |
| 🔲 Ignore Expression Errors | Page P | X Exp   | ression                |                   | Y Expression      |          | X Range      | Y Range      | > |
|                            | . 1 1  | HSI(L1) |                        | BSI(L1)           |                   |          | 160,-160,20  | 0.4,-0.4,0.2 | _ |
|                            | 2 1    | t       |                        | v <b>(</b> L1)    |                   |          | TMAX, TSTART | AutoAlways   | _ |
|                            | 2 2    | t       |                        | v(L2)             |                   |          | TMAX,TSTART  | AutoAlways   | _ |
|                            | . 3 1  | t       | t                      |                   | I(L1)             |          |              | AutoAlways   | _ |
|                            | . 3 2  | t       |                        | I <b>(</b> L2)    |                   |          | TMAX,TSTART  | AutoAlways   | _ |
|                            | 4 1    | t       |                        | W(R1)/W(L1)       |                   |          | TMAX, TSTART | AutoAlways   | _ |
|                            |        |         |                        |                   |                   |          |              |              |   |

Рис. 2. Окно задания параметров моделирования трансформатора.

Последняя строка в задании параметров моделирования – вычисление кпд как отношение энергии, выделяемой в нагрузке (R1), к энергии, поступающей в первичную обмотку (L1).

| (1) Stepping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ✓ 1:R1 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F |
| Step What R1 value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ] |
| List 0.1,0.2,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - |
| Step Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - |
| Step It       Method       Parameter Type         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: Step It         Image: Step It       Image: Step It       Image: S |   |
| Change<br>C Step all variables simultaneously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| All On All Off Default OK Cancel Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |

Рис. 3. Окно задания параметров «Stepping» (R1=0.1, 0.2 и 1 Ом).

4.3. Исследуйте влияние величины сопротивления нагрузки на вносимые трансформатором нелинейные искажения.

Для этого в окно задания параметров моделирования трансформатора введите дополнительную строку как показано на рисунке.

| 🔡 Transient Analysis Li    | imits  |           |                |                                 |                         |             |              |
|----------------------------|--------|-----------|----------------|---------------------------------|-------------------------|-------------|--------------|
| Run Add                    | Delete | Expand    | Stepping       | PSS                             | Properties Help         |             |              |
| Time Range                 | 200u   |           | Run Options    | Normal                          | •                       |             |              |
| Maximum Time Step          | 0      |           | State Variable | es Zero                         | <b>•</b>                |             |              |
| Number of Points           | 100000 |           | 🔲 Operating    | rating Point 🔽 Accumulate Plots |                         |             |              |
| Temperature Linear 💌       | 27     |           | 🔲 Operating    | Point Only                      | Fixed Time Step         |             |              |
| Retrace Runs               | 1      |           | 🔲 Auto Scal    | e Ranges                        | 🦳 Periodic Steady State |             |              |
| 🔲 Ignore Expression Errors | Page   | P X Exp   | pression       |                                 | Y Expression            | X Range     | Y Range >    |
|                            | . 1    | 1 HSI(L1) |                | BSI(L1)                         |                         | 160,-160,20 | 0.4,-0.4,0.2 |
|                            | . 2    | 1 t       |                | v <b>(</b> L1)                  |                         | TMAX,TSTART | AutoAlways   |
|                            | . 2    | 2 t       |                |                                 |                         | TMAX,TSTART | AutoAlways   |
|                            | . 3    | 1 t       | [              |                                 | I(L1)                   |             | AutoAlways   |
|                            | . 3    | 2 t       |                | I(L2)                           |                         | TMAX,TSTART | AutoAlways   |
|                            | 4      | 1 t       | t              |                                 |                         | TMAX,TSTART | AutoAlways   |
|                            | . 5    | 1 F       | F              |                                 |                         | AutoAlways  | AutoAlways   |
|                            |        |           |                |                                 |                         |             |              |

Рис. 4. Окно задания параметров моделирования трансформатора для проведения спектрального анализа.

Функция HARM(V(R1)) вычисляет амплитуды гармонических составляющих напряжения на нагрузке V(R1). В поле «X Expression» нужно ввести символ частоты F.

Откройте окно «Properties» и установите интервал времени, для расчета амплитуд гармоник напряжения V(R1) как указано на рисунке 5.

| Properties for Transient Analysis                                                                         |
|-----------------------------------------------------------------------------------------------------------|
| Plot Scales and Formats Colors, Fonts, and Lines Scope Fourier Header Numeric Output Save Curves Tool Bar |
| Upper Time Limit 200u                                                                                     |
| Lower Time Limit 190u                                                                                     |
| Frequency Step 100000                                                                                     |
| Number of Points 8192                                                                                     |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
| Auto Scaling                                                                                              |
| ✓     Include DC Harmonic     AutoScale First     10     Harmonics                                        |
|                                                                                                           |
|                                                                                                           |
| Default Set Default                                                                                       |
|                                                                                                           |
| ОК Отмена Применить Справка                                                                               |
|                                                                                                           |

Рис. 5. Окно задания параметров спектрального анализа.

Указанный на рисунке 5 интервал 190мкс – 200 мкс – это последний цикл процесса в пределах времени анализа 0–200мкс. Для функции HARM(V(R1)) – это период раскладываемого в ряд Фурье напряжения V(R1).

Запустите анализ «Transient Analysis» в режиме «Stepping» для R1=0.1 Ом, R1=0.2 Ом, и R1=1 Ом.

Полученные для этого последнего цикла процесса графики амплитудных спектров и петель гистерезиса сохраните.

#### 5. Указания к защите

- 5.1. Отчет должен содержать:
- моделируемую схему;

- графики величин, полученные в результате моделирования трансформатора;

- выводы о свойствах трансформатора, вытекающие из анализа полученных графиков. Физическое обоснование установленных свойств.

#### Контрольные вопросы

1. Что называется основной кривой намагничивания?

2. Почему зависимость магнитной индукции от напряженности магнитного поля имеет форму гистерезисной кривой?

3. Во что вырождается трансформатор в режиме к.з. и х.х.?

4. Почему нежелательна работа трансформатора в режиме насыщения сердечника?

5. Как по форме петли гистерезиса рассчитать статическую относительную магнитную проницаемость?

6. Из-за чего коэффициент связи между обмотками трансформатора меньше единицы?

7. Какой трансформатор называют совершенным, и какой – идеальным?

8. Назовите причины, вызывающие потери мощности в трансформаторе.

9. Как изменится режим работы трансформатора, если его возбуждать не источником тока, а источником напряжения?