

Packet Tracer 5.0

Packet Tracer Messaging Protocol
(PTMP)

Specifications Document

 Copyright Cisco 2008

Modification History
Revision Date Originator Comments
1 January 10,

2008
Michael Wang
(miwang@cisco.com)

Creation for general public

2 April 8, 2008 Michael Wang
(miwang@cisco.com)

Updated all sections from latest PT version

3 July 3, 2008 Michael Wang
(miwang@cisco.com)

Added Keep-alive section

 Copyright Cisco 2008

Table of Contents

Modification History... 2
1. Introduction... 4
1.1. Goal... 4
1.2. Audience ... 4
1.3. Abstract ... 4
2. Architecture... 4
3. Modeling... 6
3.1. Encoding ... 6
3.2. General Message Format .. 7
3.3. State Diagram.. 8
3.4. Connection Negotiation .. 9
3.5. Authentication... 10
3.6. Encryption... 12
3.7. Compression ... 13
3.8. Order of Operations .. 13
3.9. Keep-alives ... 13

 Copyright Cisco 2008

1. Introduction
1.1. Goal
Packet Tracer Messaging Protocol (PTMP) is explained in this document. This document
also explains the specifications of the PTMP that is added to Packet Tracer 5.0.

1.2. Audience
The scope of this document is intended for Packet Tracer 5.0 CEP developers. It is used
to validate requirements and describes detail implementation issues.

1.3. Abstract
This document describes the features of PTMP which supports the IPC and Multi-user
features of the Packet Tracer 5.0 and details about the its architectural design .

Packet Tracer 5.0 has features which require network communication among different
Packet Tracer instances and/or other applications. This communication must be uniform
and transparent to the other components so that they can use this communication easily.
PTMP implements this communication with the following aspects: connection
negotiation, encoding, encryption, compression, and authentication.

2. Architecture

For optimal network utilization, PTMP is visualized as a protocol working over TCP/IP.
This is designed as a general messaging protocol. An application utilizing PTMP, such
as PT instances or other applications, will be referred to as a PTMP application. The
messages sent between PTMP applications are not governed by PTMP. It is the
responsibilities of the components utilizing PTMP to specify and follow their own
messaging formats and behaviors. These messages can be network packets in the case of
Multi-user or IPC calls in the case of IPC. In general, PTMP can be considered as a TCP
extension that applications can use to communicate with PT instances.

 Copyright Cisco 2008

The communication protocol decided is TCP. Other protocols such as UDP have been
considered. But, TCP is the standard and most versatile across different platforms and
networks.

The communication model for PTMP applications is client-server, based on TCP. A
PTMP application can start listening on a TCP port and allow other instances to connect
to it. The default TCP port for Multi-user is 38000 and for IPC is 39000. These port
numbers are currently unassigned in the IANA registered TCP numbers
(http://www.iana.org/assignments/port-numbers). The component using PTMP can also
change the port. Other PTMP applications can connect to one that is listening by
providing the IP address and port number.

When connections are made, a negotiation step is used to determine how the two PTMP
applications will communicate with each other. This includes negotiation on
authentication, encoding, encryption, and compression methods. Then an authentication
step is used to verify the client PTMP application.

Once a TCP connection is made between two PTMP applications and after the
negotiation and authentication steps, there is no concept of server and client. Both
applications have the same role and functionalities. Now, the two PTMP applications can
send messages to each other using PTMP.

There can be more than one connection to different PTMP applications. For each
connection, a dedicated TCP session is established.

When a PTMP application needs to disconnect, it sends a disconnect message for a
graceful disconnection.

 Copyright Cisco 2008

http://www.iana.org/assignments/port-numbers

3. Modeling
3.1. Encoding

Before going into details about the protocol, we must address the encodings available in
PTMP and the selected encoding during each connection. Because some of the PTMP
applications that will be developed are in Flash 8, it is necessary to support text encoding.
However, binary encoding allows for efficient conversion and shorter messages, thus it is
also necessary to support binary encoding.

The encoding used for each connection is negotiated in the beginning of each connection.

 Copyright Cisco 2008

PTMP also specifies the basic types natively supported in PTMP. These types can be
automatically converted by PTMP. Custom types that are built on-top of these basic
types are also possible but it is the responsibilities of the components using PTMP to
specify and follow these custom types.

The encoding formats to be followed for different basic types are as follows.

Name Binary Encoding Text Encoding (all terminated
by \0)

byte An 8-bit signed value A signed value between -128 to 127

bool An 8-bit value -- true and false “true” or “false”

short A 16-bit signed number A signed number between -2^15 to 2^15 – 1

int A 32-bit signed number A signed number between -2^31 to 2^31 – 1

long A 64-bit signed number A signed number between -2^63 to 2^63 – 1

float A single precision 32-bit A decimal number

double A double precision 64-bit A decimal number

string Variable-length Unicode characters
terminated by \0

Variable-length Unicode characters terminated
by \0

QString Variable-length Qt Unicode characters
terminated by \0

Variable-length Qt Unicode characters
terminated by \0

IP address A 32-bit value An IP address in the x.x.x.x format

IPv6
address A 128-bit value An IPv6 address in the x:x:x:x:x:x:x:x format

MAC
address A 48-bit value A MAC address in the xxxx.xxxx.xxxx format

uuid A 128-bit value
A UUID in the {HHHHHHHH-HHHH-
HHHH-HHHH-HHHHHHHHHHHH}
format

Maximum width is allocated for each data type to accommodate future requirements and
different programming languages. All the above data types may not be required. But for
completeness we can keep the encoding information. Unsigned types are not available
because languages such as Java do not have native support for unsigned types.

Binary encoding specifies the length or terminating character for each type of values.
Thus it is straightforward to separate the values for reading. However, values in text
encoding do not specify a length per type. A terminating character (\0) is used to
separate the values for reading.

3.2. General Message Format

 Copyright Cisco 2008

Messages are sent between PTMP applications once the TCP connection is established.
These messages need not be sent in one TCP segment. It can be of almost-infinite length
(2^31 – 1 = maximum number for int) and be sent over in multiple TCP segments.
However, they are processed only when the entire message is received. All of these
messages must follow a common message format in order to differentiate the different
types of messages as well as determining the end of the message. The commonly used
Length-Type-Value (LTV) is used for all PTMP messages.

The fields are as follow:

• Length (int): number of bytes or characters in the message excluding the length
field but including the type and value fields; this field is never encrypted or
compressed

• Type (int): specifies the type of message
• Value: variable length

The following are different values in the Type field:

Value Message
0 Negotiation request
1 Negotiation response
2 Authentication request
3 Authentication challenge
4 Authentication response
5 Authentication status
6 Keep-alive
7 Disconnect
>= 100, < 200 IPC messages
>= 200, < 300 Multi-user messages

3.3. State Diagram

PTMP has the following states:

• Not connected: created but not initiated TCP connect, or disconnected
• Connecting: TCP is connecting
• Negotiating: exchanging connection information
• Authenticating: exchanging username and password
• Established: authenticated and fully established

The Simplified State diagram of the PTMP is given below

 Copyright Cisco 2008

3.4. Connection Negotiation

Once a TCP connection is made, the first step of the two PTMP applications is
connection negotiation. This is to decide on a set of common properties to be used on
both sides of the connection.

PTMP applications exchange information during negotiation using the following message
format:

• PTMP identifier (string): a constant identifier, “PTMP”
• PTMP version number (int): 1
• PTMP application ID (uuid): UUID of the application sending this negotiation

message
• Encoding (int): 1 = text, 2 = binary
• Encryption (int): 1 = none, 2 = XOR
• Compression (int): 1 = no, 2 = zlib default
• Authentication (int): 1 = clear text, 2 = simple, 4 = MD5
• Timestamp (string): local time when connection is initiated in the format

YYYYMMDDHHMMSS
• Keep-alive (int): keep-alive period in seconds
• Reserved (string): currently unused

The client first sends a negotiation request message to the server specifying the desired
connection properties. The server replies with the decided connection properties in a
negotiation response message. The entire negotiation process is in text encoding.

 Copyright Cisco 2008

3.5. Authentication

The PTMP follows CRAM (Challenge Response Authentication Mechanism), a
challenge response mechanism for authentication.

After TCP connection establishment and connection negotiation, authentication process
starts. It is assumed that the both the client and server applications utilizing PTMP have
knowledge of the same credentials (username and password, or id and key). This is a pre
requisite for successful authentication.

The client first sends an authentication request message. The server challenges it by
sending an authentication challenge message. The challenge is a randomly generated
string consisting of 32 characters. Depending on the negotiated authentication method,
the client may need to calculate the “digest” by applying a hashing algorithm. If the
negotiated authentication method is clear text, the password is to be sent back in clear
text. If the negotiated authentication method is simple authentication, it uses the simple
authentication method described in Section 3.5.5 to encrypt the password. If the
negotiated authentication method is MD5, it uses MD5 along with the challenge text to
produce a digest of the password. The digest is sent back in an authentication response
message. The server verifies the digest using the same authentication method. If the
digest matches, the server sends back an authentication status message to the client and
ending the authentication process. If the digest does not match, then the server sends
back a disconnect message.

 Copyright Cisco 2008

Upon disconnection of the TCP session, authentication is to be re-initiated.

3.5.1. Authentication Request Message Format

Fields of Authentication Request Message are as follows:

• Username (string): username or id of the client

3.5.2. Authentication Challenge Message Format

Fields of Authentication Challenge Message are as follows:

• Challenge text (string)

3.5.3 Authentication Response Message Format

Fields of Authentication Response Message are as follows:

• Username (string): username or id of the client

 Copyright Cisco 2008

• Digest text (string): digest of the password generated using the negotiated
authentication method

• Custom (string): reserved, currently unused

3.5.4 Authentication Status Message Format

Fields of Authentication Status Message are as follows:

• Status (bool): true = successful, false = failed

3.5.5 Simple Authentication Method

The simple authentication method uses a simple hashing function to generate a digest
from the given password.

function simple_hash(string password)
{
 string hash;
 for (int i=0; i<password.length; i++)
 hash[i] = 158 – password[i];
 return hash;
}

3.6. Encryption

Confidentiality is the sole purpose of encryption in PTMP. Every message after the
negotiation process is to be encrypted if it is negotiated to do so. The encryption method
is simple XOR the data with a symmetric key (ie, both the server and client use the same
key to encrypt and decrypt).

The encryption key is derived from the UUIDs and the timestamps of the server and
client in this sequence:

1. Server’s UUID in {HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH}
format

2. Client’s UUID in {HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH}
format

3. “PTMP”
4. Server’s timestamp in YYYYMMDDHHMMSS format
5. Client’s timestamp in YYYYMMDDHHMMSS format

This encryption key is to be used to XOR with the data messages in the following way:

function encrypt(array data, array key)
{
 for (int i=0; i<data.length; i++)

 Copyright Cisco 2008

 data[i] = data[i] ^ key[i % key.length];
}

The encrypt function can also be used as the decrypt function to

3.7. Compression

The compression method is zlib’s compression. See http://www.zlib.net. All messages
after the negotiation process are to be compressed if it is negotiated to do so.

3.8. Order of Operations

When sending messages, PTMP follows this order of operations:

1. Message with type and value fields are passed into PTMP for sending.
2. If state is authenticating or established:

a. Compress message if compression is negotiated
b. Encrypt message if encryption is negotiated

3. Prepend size of the message after compression and encryption.

When receiving messages, PTMP follows this order of operations:

1. Read the size of the message.
2. If state is authenticating or established:

a. Decrypt message if encryption is negotiated
b. Uncompress message if compression is negotiated

3. Send message to the component utilizing PTMP

3.9. Keep-alives

The Keep-alive mechanism in PTMP is used to detect uninformed disconnections from
peers. The keep-alive period is negotiated during the negotiation phase. The client sends
the desired keep-alive period and the server will take the same number. The period is in
seconds, which is the number of seconds keep-alive messages are being sent apart. If the
negotiated keep-alive period is zero, then keep-alives are not sent. The keep-alive
message is merely an empty PTMP message with Keep-alive as the type. If keep-alive
messages are not received in three times of the keep-alive period, then PTMP would
consider the peer disconnected and would notify the PTMP application.

 Copyright Cisco 2008

http://www.zlib.net/

	1. Introduction
	1.1. Goal
	1.2. Audience
	1.3. Abstract

	2. Architecture
	3. Modeling
	3.1. Encoding
	3.2. General Message Format
	3.3. State Diagram
	3.4. Connection Negotiation
	3.5. Authentication
	3.5.1. Authentication Request Message Format
	3.5.2. Authentication Challenge Message Format
	3.5.3 Authentication Response Message Format
	3.5.4 Authentication Status Message Format
	3.5.5 Simple Authentication Method
	3.6. Encryption
	3.7. Compression
	3.8. Order of Operations
	3.9. Keep-alives

