
DVB-T2 receiver



Introduction

▪ The implementation of the receiver is not included in DVB-T2 
standard

– Only the transmitter is fully detailed

▪ However  the DVB Project provides as additional information 
the Implementation Guidelines

– A guide to follow when implementing the receiver

https://dvb.org/?standard=implementation-guidelines-for-
a-second-generation-digital-terrestrial-television-
broadcasting-system-dvb-t2

https://dvb.org/?standard=implementation-guidelines-for-a-second-generation-digital-terrestrial-television-broadcasting-system-dvb-t2
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▪ After the digital blocks of the transmitter



Frequency offset 

▪ Due to the implementation derive, frequencies at the Tx and Rx 
may differ even being nominally the same

– Frequency offset  ∆𝒇 = 𝑭𝑻𝒙 − 𝑭𝑹𝒙
– This can vary with the temperature (drift)

– Makes necessary a tracking
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Perfect synchronization (fTx-fRx=0) Synchronization error (fTx-fRx=Δf != 0)

▪ The frequency offset error introduces ICI



▪ The carrier separation is 𝟏/𝑻𝒔

▪ In a general expression  ∆𝒇 = 𝒏 Τ𝟏 𝑻𝒔 + 𝜹𝒇

– 𝒏 is an integer

– 𝜹𝒇 is a real number in [ Τ−𝟏 𝟐𝑻𝒔, Τ𝟏 𝟐𝑻𝒔]

▪ 𝒏 doesn’t generate ICI, but the carrier reference is lost

– The 𝟎 carrier becomes the 𝒏𝒕𝒉

▪ 𝜹𝒇 causes the lost of orthogonality and the ICI 

– Needs to be corrected before working in the frequency domain



▪ Two approaches can be followed to correct it 

– Act over the analogue oscillator

– Digital correction

▪ As a general truth it is better to work in the digital domain

▪ If we consider

– Desired signal 𝒔(𝒕)

– Received signal 𝒔𝒓𝒙 𝒕 = 𝒔 𝒕 𝒆𝒋𝟐𝝅∆𝒇𝒕

▪ If we knew the value of ∆𝒇, we would only need to multiply 𝒔𝒓𝒙 𝒕 by 
𝒆−𝒋𝟐𝝅∆𝒇𝒕, obtaining the desired signal

▪ Digitally I need to multiply  𝒔𝒓𝒙 𝒌𝑻 by 𝒆−𝒋𝟐𝝅∆𝒇𝒌𝑻, being 𝑻 the sampling time

– By using a DSS (Digital Signal Synthesizer) we generate sine and cosine to 
generate the complex exponential 



Sampling frequency offset

▪ Again the difference between clocks

– DAC at the Tx and ADC at the receiver have a frequency deviation

– 𝒇𝒔𝒂𝒎𝒑𝑹𝒙 = 𝒇𝒔𝒂𝒎𝒑𝑻𝒙(𝟏 + 𝜹)

– 𝜹 is measured in ppm (parts per million)

▪ Depends on the precision of the crystal in the clock (typical value 50 ppm)

▪ Varies in the time due to temperature fluctuations 

– A tracking of the offset is needed
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▪ In the example the clock at the receiver is faster

– The receiver will end up taking samples of a different OFDM symbol (ISI) 
due to the lost of the temporal synchronism

– The first period has 6 samples at the transmitter and 7 at the receiver

– For the receiver the signal is 6/7 slower 

– This produces a spectrum compression/expansion

Sample at the Tx
Sample at the Rx



▪ The effects of this are:

– ISI, because of the lost of temporal synchronism

– ICI, because of the expansion/compression

▪ However:

– The deviation will be as high as 100ppm

– For a 10MHz clock this implies an error of ±1kHz

– A sample of every 10000 is lost

– The error will take a lot of time to be noticeable 

– A sample deviation in  more than 2000 samples symbol is not a lot

▪ To ease this problem interpolation can be used to know what point was 
transmitted (Lagrange coefficients)

▪ This implies that the deviation (δ) of the sampling frequency offset needs to 
be estimated





Synchronization

▪ When the reception starts:

– The transmission mode is unknown 

– The cyclic prefix is unknown 

– The temporal beginning of the symbol is unknown

– Frequency offset error

– Sampling frequency offset error 

▪ This is all a mess!



▪ The synchronization is carried out by performing the following process

– Time domain

▪ Mode detection

▪ Cyclic prefix detection

▪ Coarse time synchronization

▪ Fine frequency synchronization

– Frequency domain (AFTER THE FFT!)

▪ Coarse frequency synchronization

▪ Frequency and sampling frequency offset error tracking

▪ Fine time synchronization



▪ Mode detection

– Transmitted symbols may have different amount of samples

– The CP is a copy of the last samples in the data part of the symbol

Data Data DataCP CP CP

NFFT

DataCP

N

N

Copy



▪ Lets suppose that we have a 2k mode transmission (N=2048)

▪ By delaying the received signal 2048 samples (FIFO with length 2048)

Data Data DataCP CP CP

N= 2048
Data Data DataCP CP CP

Received

Delayed

Same samples Same samples Same samples



▪ By multiplying the conjugated delayed version of the received signal by the 
original received signal

– In the zone with same samples the result is the modulus (always greater than 0)

– In the other zones the product will be a random complex number

>0 Random >0 Random >0 Random

Data Data DataCP CP CP

N= 2048
Data Data DataCP CP CP

Received

Delayed and 
conjugated

Same samples Same samples Same samples

Random



▪ Integrating the result in a window of length the number of samples in 
the CP (NCP)

>0 Random >0 Random >0 RandomRandom



▪ Mathematically this corresponds with the autocorrelation of a 
window of NCP samples

𝒚 𝒌 = ෍

𝒏=𝟎

𝑵𝑪𝑷−𝟏

𝒔 𝒌 − 𝒏 𝒔∗(𝒌 − 𝒏 − 𝑵)

▪ We can also define the energy of the signal as follows

𝒆 𝒌 = ෍

𝒏=𝟎

𝑵𝑪𝑷−𝟏

𝒔 𝒌 − 𝒏 𝒔∗(𝒌 − 𝒏)

– 𝒆 𝒌 is always positive and real

– 𝒆 𝒌 and 𝐲 𝒌 only coincide in one sample, the last of the symbol 



▪ We can normalize 𝒚 𝒌 by 𝒆 𝒌

▪ Ideally the peaks will reach 1, but because of noise and interferences this 
won’t happen, 0.5 is used as threshold 

Data Data DataCP CP CP

1



▪ In all this we have supposed that we know NCP, but in a real situation WE 
DON’T KNOW!

▪ If any NCP is fixed and  the used one is smaller

– The integration of the energy, e 𝒌 , is bigger than the peak obtained in 
the autocorrelation, 𝒚 𝒌

Data Data DataCP CP CP

1



▪ If the opposite happens and the received CP is bigger than the one we 
set a mesa appears instead of a peak

Data Data DataCP CP CP

1



▪ As a method to detect the mode we can

– Set as default the smaller mode with the smaller CP ( we don’t want to 
have the situation where the peak is attenuated by averaging, we are using 
a threshold to detect)

– Calculate the autocorrelation and the energy

– If 𝐲 𝒌 /𝒆 𝒌 ≥ 𝟎. 𝟓 the mode is the one currently being tested

– After a timeout the mode is not found change to the next smaller mode 
and repeat the process

– If the time out is surpassed after trying all the modes … maybe there is no 
signal in the air! 



▪ Cyclic prefix detection

– The mode is already known

– Again the autocorrelation is calculated as well as the energy supposing the 
smaller CP

– Counting the samples in the mesa (until the normalized autocorrelation  is 
lower than the threshold) we can guess what CP the transmitted signal is using

1



▪ Coarse time synchronization

– Already knowing the mode and the CP

– Again we calculate the autocorrelation

– The peaks coincide with the last data sample of a symbol

Data Data DataCP CP CP

y(k)



▪ The presented method has some problems

▪ The maximum is found in one sample

– Ideally this would lead to a perfect synchronization

– The transmitted signal is immersed in a noisy environment, the 
sample will not usually be the one we expected

▪ However this will be enough to allocate the FFT window



▪ Fine frequency synchronization

– The carrier separation is 𝟏/𝑻𝒔
– In a general expression  ∆𝒇 = 𝒏 Τ𝟏 𝑻𝒔 + 𝜹𝒇

▪ 𝒏 is an integer

▪ 𝜹𝒇 is a real number in [ Τ−𝟏 𝟐𝑻𝒔, Τ𝟏 𝟐𝑻𝒔]

– 𝒏 doesn’t generate ICI, but the carrier reference is lost

– 𝜹𝒇 causes the lost of orthogonality and ICI 

▪ Needs to be corrected before working in the frequency domain

– The remaining par t of the frequency offset can be fixed afterwards



▪ Lets suppose that the received signal has a frequency offset of ∆𝑓 : 
𝑠𝑟𝑥(𝑡) = 𝑠 𝑡 𝑒𝑗2𝜋∆𝑓𝑡

▪ In discrete form
𝑠𝑟𝑥(𝑘) = 𝑠 𝑘 𝑒𝑗2𝜋∆𝑓𝑘𝑇

– Being 𝑇 the sampling time

▪ We can rewrite the expression obtained for the autocorrelation

𝑦 𝑘 = ෍

𝑛=0

𝑁𝐶𝑃−1

𝑠𝑟𝑥 𝑘 − 𝑛 𝑠𝑟𝑥
∗ (𝑘 − 𝑛 − 𝑁) =

= ෍

𝑛=0

𝑁𝐶𝑃−1

𝑠 𝑘 − 𝑛 𝑠∗ 𝑘 − 𝑛 − 𝑁 𝑒𝑗2𝜋∆𝑓(𝑘−𝑛)𝑇𝑒−𝑗2𝜋∆𝑓(𝑘−𝑛−𝑁)𝑇



▪ Analysing the previous expression 
𝒆𝒋𝟐𝝅∆𝒇(𝒌−𝒏)𝑻𝒆−𝒋𝟐𝝅∆𝒇(𝒌−𝒏−𝑵)𝑻 = 𝒆𝒋𝟐𝝅∆𝒇𝑵𝑻

▪ Taking again that In a general expression  ∆𝒇 = 𝒎 Τ𝟏 𝑻𝒔 + 𝜹𝒇 and  applying 
that  𝑻𝒔 = 𝑵𝑻

𝒆𝒋𝟐𝝅∆𝒇𝑵𝑻 = 𝒆
𝒋𝟐𝝅

𝒎
𝑵𝑻

+𝜹𝒇 𝑵𝑻
= 𝒆𝒋𝟐𝝅𝒎𝒆𝒋𝟐𝝅𝜹𝒇𝑵𝑻 = 𝒆𝒋𝟐𝝅𝜹𝒇𝑵𝑻

▪ And returning to the expression fore the autocorrelation

𝒚 𝒌 = ෍

𝒏=𝟎

𝑵𝑪𝑷−𝟏

𝒔 𝒌 − 𝒏 𝒔∗ 𝒌 − 𝒏 − 𝑵 𝒆𝒋𝟐𝝅𝜹𝒇𝑵𝑻



▪ If we consider the expression for the last sample

𝒔 𝒌 − 𝒏 = 𝒔 𝒌 − 𝒏 −𝑵 𝟎 ≤ 𝒏 ≤ 𝑵𝑪𝑷 − 𝟏
𝒔 𝒌 − 𝒏 𝒔∗ 𝒌 − 𝒏 −𝑵 = 𝒔 𝒌 − 𝒏 𝟐 𝟎 ≤ 𝒏 ≤ 𝑵𝑪𝑷 − 𝟏

𝒚 𝒌 = ෍

𝒏=𝟎

𝑵𝑪𝑷−𝟏

𝒔 𝒌 − 𝒏 𝟐 𝒆𝒋𝟐𝝅𝜹𝒇𝑵𝑻 = 𝑲𝒆𝒋𝟐𝝅𝜹𝒇𝑵𝑻 𝑲 ∈ 𝕽

▪ This position is the maximum of the autocorrelation already evaluated in the 
coarse time synchronization 

▪ The estimation for 𝜹𝒇 is:

𝜹𝒇 =
𝐚𝐧𝐠𝐥𝐞 𝒚𝒎𝒂𝒙

𝟐𝝅𝑵𝑻



▪ Coarse frequency synchronization

– We already know the mode an CP

– We have an estimation for the beginning of the symbols

▪ We know the samples to apply the FFT (bounding the ISI)

– The fine frequency offset has been estimated and can be corrected by 
means of a DSS

▪ The ICI is eliminated

– We can already apply the FFT and perform the rest of the synchronization 
in the frequency domain



▪ In a general expression  ∆𝒇 = 𝒏 Τ𝟏 𝑻𝒔 + 𝜹𝒇

▪ 𝜹𝒇 has been already corrected

▪ The remaining to correct is a entire number of carriers shift

▪ Continual pilots are used for this purpose, if they are not in their place if 
this offset exists

0 852-852 1023-1024

OFDM symbol in the frequency domain (2k mode)

Pilot
Data



▪ As stated in the standard the location of the continual pilots is 
known and fixed always with  the same information

▪ We denote  as 𝑺𝒏 𝒌 the nth transmitted symbol (in the frequency 
domain)

▪ In reception 𝑺𝒏
𝒓𝒙 𝒌 = 𝑺𝒏 𝒌 𝑯 𝒌 , being 𝑯 𝒌 the frequency 

response of the channel, that can be expressed as 𝑯 𝒌 =
𝒉 𝒌 𝒆𝒋𝜽(𝒌)

▪ Computing the following product
𝑺𝒏
𝒓𝒙 𝒌 𝑺𝒏−𝟏

𝒓𝒙 𝒌 ∗ = 𝑺𝒏 𝒌 𝑺𝒏−𝟏 𝒌 ∗𝒉 𝒌 𝟐

▪ In general this expression will be a random complex number, but in 
the continual pilot positions 



▪ The transmitted pilots use a BPSK constellation [-A, A]
– The amplitude is different for the different pilot patterns (4/3, 7/4 or 7/3)

▪ If P is the set of points corresponding to the continual pilots location
𝑺𝒏 𝒌 𝑺𝒏−𝟏 𝒌 ∗ = 𝑨𝟐 𝒌 ∈ 𝑷

𝑺𝒏
𝒓𝒙 𝒌 𝑺𝒏−𝟏

𝒓𝒙 𝒌 ∗ = 𝑺𝒏 𝒌 𝑺𝒏−𝟏 𝒌 ∗𝒉 𝒌 𝟐 = (𝑨𝟐)𝒉 𝒌 𝟐 𝒌 ∈ 𝑷

– A real and positive number

▪ Otherwise the result will be a random complex number

▪ If there is a frequency offset the pilots will be in P+m instead of in P



▪ A possible algorithm to correct the coarse frequency offset 

– We define the search interval 𝒎 ∈ −𝑴𝒎𝒂𝒙,𝑴𝒎𝒂𝒙

– The sum 𝑺𝒏 𝒌 𝑺𝒏−𝟏 𝒌 ∗ for 𝒌 ∈ 𝑷 +𝒎 is calculated 

– If the sum is higher than for the previous maximum the value and the index 
𝒎 are stored

– The final maximum’s index will be the frequency offset

– The frequency offset will be corrected with a DSS



▪ P1 aided detection
– A 1K OFDM symbol with two "guard interval-like" portions added

– The total symbol lasts 224 μs in 8 MHz system, being 112 μs, the duration of the useful 
part 'A' of the symbol plus two modified 'guard-interval' sections 'C' and 'B' of roughly 59 
μs (542 samples) and 53 μs (482 samples) 

– The copies are frequency displaced to avoid common wave interference 

AC B

59μs 53μs

ej2πft ej2πft 



▪ The special characteristics of  the P1 symbol allow to perform the detection 
with the following scheme

Delay Tc

Delay Tb

Delay TaAverage 
Tr

Average 
Tr

e-j2πft

conjugate

conjugate

Input

Output



AC B

AC B

AC B

Ta=TrTc Tb

Tc Tr-Tc

Tr-TbTb

Tc

Tb

Original P1 symbol

Delayed Tc

Delayed Tb

Delayed Tc+Tr

Output



▪ 𝑻𝑹 is chosen to be the reciprocal of 𝒇𝑺𝑯 and thus corresponds to 1024 sample 
periods, the same as 𝑻𝑨
– This is chosen to eliminate unwanted complex-constant terms at the outputs of the two 

correlators which might otherwise be caused by CW interference or certain other 
unwanted correlation conditions

▪ The argument of the correlator outputs contains information about the fine 
frequency offset, but also the frequency shift
– By multiplying the two correlator pulses the effect of the unknown arbitrary phase is 

cancelled 

– The argument of the final output pulse can be shown to be proportional to the fine 
component of the frequency offset.



Frequency tracking

▪ The frequency offset varies in the time (drift)

▪ With the previous method we have stated an instantaneous offset 
value 

▪ This needs to be tracked to correct its possible deviations

▪ A PI (proportional integrator) control is used

Receiver

PI DSS

Estimation

Offset



▪ Frequency offset estimation

– We use a similar process to the one for coarse frequency 

– 𝑺𝒏
𝒓𝒙 𝒌 𝑺𝒏−𝟏

𝒓𝒙 𝒌 ∗ = 𝑺𝒏 𝒌 𝑺𝒏−𝟏 𝒌 ∗𝒉 𝒌 𝟐

– The result should be a positive real number for 𝒌 ∈ 𝑷

– If a frequency offset exists the phase of the previous product is 
different from zero and proportional to the frequency offset 

▪ The algorithm for the frequency offset tracking

– For every couple of received symbols 

▪ The sum  𝑌 of the products 𝑆𝑛 𝑘 𝑆𝑛−1 𝑘 ∗ for 𝑘 ∈ 𝑃 is calculated 

▪ The frequency offset is ∆𝑓 =
𝑎𝑛𝑔𝑙𝑒 𝑌

2𝜋 1+
𝑁𝐶𝑃

𝑁

▪ This estimation actuates over the DSS through the PI control

– The control loop constants must be calculated taking into account

▪ Must be fast to follow the drift of the clock

▪ Must be slow in comparison with the channel  temporal fadings



▪ The sampling frequency offset also needs to be tracked and corrected

▪ The correction is very similar to the frequency offset one but instead of a DSS 
a Farrow filter is applied

▪ However it is much more complex



Channel estimation

▪ After the channel propagation
𝑺𝒓𝒙 𝒇 = 𝑺 𝒇 𝑯 𝒇 + 𝒏(𝒇)

– Being 𝒏(𝒇) the noise in the channel

▪ In the discrete domain (after the FFT)
𝑺𝒓𝒙 𝒌 = 𝑺 𝒌 𝑯 𝒌 + 𝒏(𝒌)

▪ In order to demodulate the received signal 𝑯 𝒌 must be calculated

– ෩𝑯 𝒌 represents the estimation of 𝑯 𝒌

– The estimation of 𝑺 𝒌 is obtained by equalizing
෨𝑺 𝒌 = 𝑺𝒓𝒙 𝒌 /෩𝑯 𝒌 = 𝑺 𝒌 𝑯 𝒌 /෩𝑯 𝒌 + 𝒏(𝒌)/෩𝑯 𝒌



▪ The channel is estimated by using the scattered pilots inserted in the OFDM 
symbol

Symbol 0
Symbol 1
Symbol 2
Symbol 3

Continual and scattered Continual Scattered Data



▪ At the receiver 𝑺𝒓𝒙 𝒌 = 𝐒 𝒌 𝐇 𝒌 + 𝐧(𝐤)

– If 𝒌 is a scattered pilot carrier, the value of 𝑺 𝒌 is known

– So the estimation in those positions can be obtained by dividing by 
the value of 𝑺 𝒌

෩𝑯 𝒌 = 𝑺𝒓𝒙 𝒌 /𝑺 𝒌

Symbol 0
Symbol 1
Symbol 2
Symbol 3

Estimated H(k)

Unknown H(k)



▪ The remaining positions are estimated in two steps

– Channel estimation in time direction

– Channel estimation in frequency direction

▪ For the temporal estimation a carrier 𝒌 is fixed and by means an interpolator 
filter the unknown positions are calculated

Symbol 0
Symbol 1
Symbol 2
Symbol 3

Estimated H(k)

Unknown H(k)
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▪ After the temporal interpolation, a frequency interpolation is carried out

– A symbol is selected and the unknown positions are interpolated

Symbol 0
Symbol 1
Symbol 2
Symbol 3

Estimated H(k)

Unknown H(k)

Frequency direction



▪ The interpolator filters are designed taking into account the 
characteristics of the radio channel

– A WSS-US (Wide Sense Stationary-Uncorrelated Scattering)

▪ As the signals propagates through a noisy channel wiener filters 
are used to minimize the square root mean error



THANKS!
Any questions?

Darío Alfonso Pérez-Calderón Rodríguez 

dperez@gas-granat.ru


