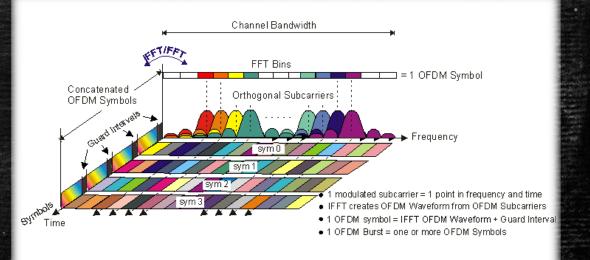
Introduction to OFDM

Basic concepts

Definitions

- Orthogonal Frequency Division Multiplexion
 - A number of orthogonal carriers bear the information
 - Resilient to time synchronization errors
 - Very high spectral efficiency
- OFDM is a wide used transmission technique
 ADSL
 - IEEE 802.11a/g/n and WiMAX
 - DVB-T, DVB-H, DVB-T₂, DVB-NGH.



The energy of a signal is defined as

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

There are signals with E = ∞, as periodic signals for them it is defined the average power:

$$P = \lim_{T_0 \to \infty} \frac{1}{2T_0} \int_{-T_0}^{T_0} |x(t)|^2 dt$$

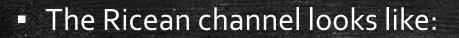
- Signals can be classified in
 - Energy signals: $0 < E < \infty$
 - Power signals: $0 < P < \infty$

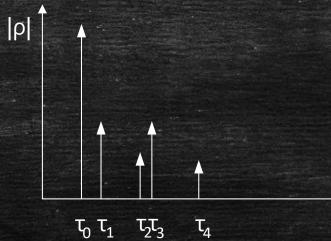
Propagation scenarios

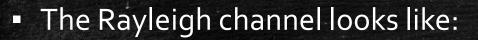
- In wireless communications there are much harder propagation conditions than in wired communications
- There are different propagations paths from the transmitter to the receiver (multi path propagation)

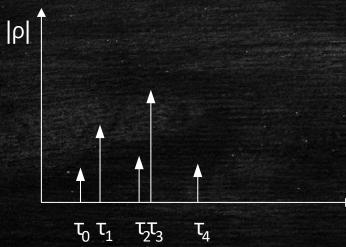
- The propagation scenarios are usually modelled as a FIR filter which taps represent:
 - Delay (τ)
 - Path complex gain (ρ)

- The propagation scenarios can be divided in two main types
 - Ricean (there is line of sight and hence direct ray)
 - Rayleigh (there is no line of sight and hence no direct ray)









Single carrier modulation

Lets suppose a single carrier BPSK modulation

- Carrier frequency, $f_c = 1/T_c$; 1 bit per symbol
 - $b_i = 1$, 180° degrees phase shift
 - b_i = 0, o^o degrees phase shift

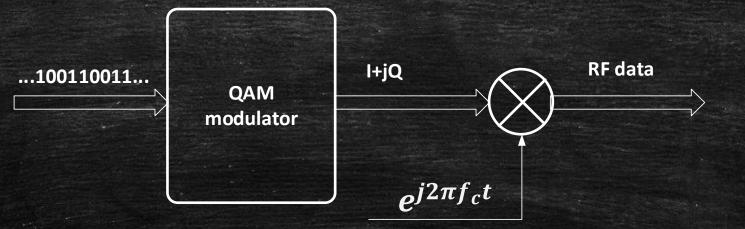
Tc

Ts

• Bit rate $R = 1/T_s$, where T_s represents the symbol time

1

A simple transmitter example



0	0	0	0	0	0	0	0	0	0	•	0	0	0	
						0	0	0	0	0	0	0	•	
	Q	0	0	0	°q	0	0	•	•	0	0	•	0	
	<u> </u>				<u> </u>	•	0	•	0	0	0	•	<u>° Q</u>	
		0	0	0	0	0	0	0	0	0	0	•	0	
						0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	•	0	0	0	0	0	0	
						0	0	•	0	0	0	0	0	
ODSK		16 0 0 0				64-QAM								
QPSK		16-QAM												

Different echoes effect:

Transmitted data

 S_1

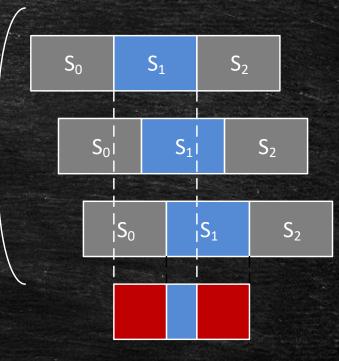
S₀

Propagation through the channel

 $\tau_0 \tau_1$

てっ

At the receiver



- The red coloured part is affected by ISI

 S_2

- Interference produced by other symbols
- The symbol at the receiver seems longer in time
- In the following part we will focus on the blue part
 - Only interference from the own symbol delayed

ρ

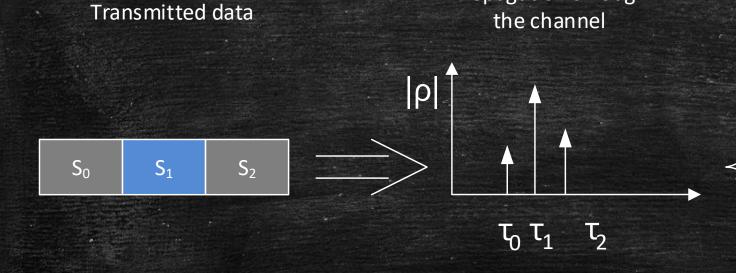
 All the stated is observed in the time domain, but what is its interpretation in the frequency domain?

 $S(t) \stackrel{FFT}{\longleftrightarrow} S(f)$ $S(t-\tau) \stackrel{FFT}{\longleftrightarrow} e^{-j2\pi f\tau} S(f)$

• For a channel as the one shown in the previous example: $S_{Rx}(f) = \rho_0 S(f) e^{-j2\pi f\tau_0} + \rho_1 S(f) e^{-j2\pi f\tau_1} + \rho_2 S(f) e^{-j2\pi f\tau_2}$ $S_{Rx}(f) = S(f) \left(\rho_0 e^{-j2\pi f\tau_0} + \rho_1 e^{-j2\pi f\tau_1} + \rho_2 e^{-j2\pi f\tau_2}\right)$ $S_{Rx}(f) = S(f) H(f)$

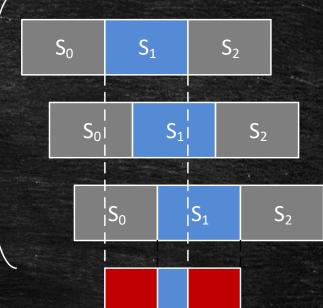
H(f) represents the channel response in the frequency domain

- The channel effect can produce high performance loss
 - The combination of the different paths can be constructive or destructive
 - The destructive combinations can lead to huge attenuation (fadings) even to erasure events
 - The channel equalization is necessary to solve the problems associated to the channel fadings and erasures



Now we will focus on the red part of the received symbol Propagation through

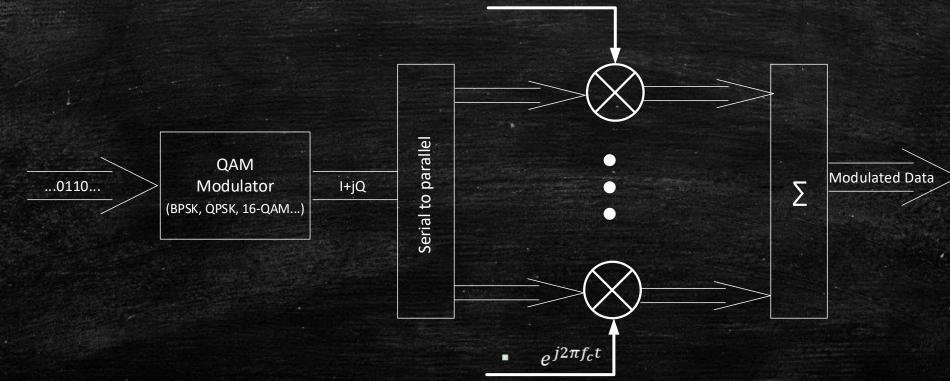
At the receiver



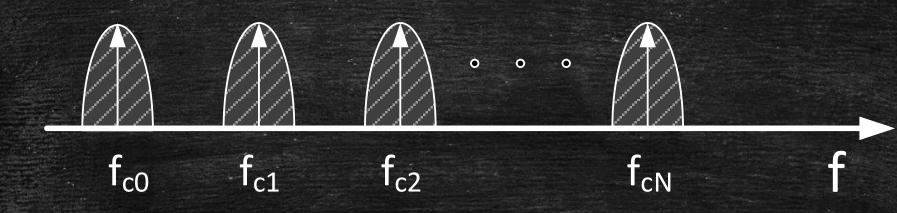
- Sum of different delayed symbols
- In order to recover the information the symbol
 - T_s must be much longer than the difference between the first ray and the last one of the channel (\(\tau_{max})\)
 - The longer the symbol is the less rate we obtain

Multi carrier modulation

- The solution for the aforementioned problem is parallelize
 - Send the information through different carriers with higher symbol period



The spectrum at the output of the modulator:



- For a N+1 carriers, input data rate R, and BPSK modulation
 - For a same data rate R, the symbol time of a multi-carrier is N+1 times higher than for a single carrier
 - For a given au_{max} the data rate is higher than in a single carrier
 - The spectrum occupied is much wider!

Orthogonal Frequency Division Multiplexion

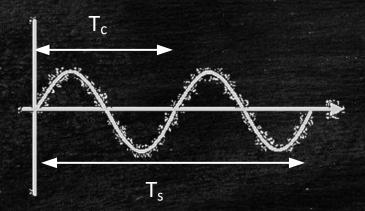
Spectral characteristics of a FDM signal:

• $\phi_c = e^{j2\pi f_c t} rect\left(\frac{t}{T_s}\right) = \begin{cases} e^{j2\pi f_c t} & \text{if } 0 \le t \le T_s \\ 0 & \text{in any other case} \end{cases}$

Time (real part):

Frequency:

 $1/T_s$



- If the N carriers in a OFDM symbol satisfy:

 f_{ck} = k/T_c with k = -N/2, ..., 0, ..., N/2 1
- The carriers are orthogonal
 - The maximum of a carrier coincides with the zeros of the others

 $1/T_c$ $2/T_c$

 $-2/T_{c} - 1/T_{c} = 0$

Mathematically the expression for a determinate symbol:

$$s(t) = \sum_{k=0}^{\infty} a_k e^{j2\pi f_{ck}t} rect\left(\frac{t}{T_s}\right)$$

- a_k represents the k-th output symbol of the QAM modulator ($a_k = I_k + jQ_k$) - N represents the number of carriers in the OFDM symbol - $f_{ck} = k/T_c$ with k = 0, 1, ..., N - 1

The problem is now obtaining that many analogue oscillators!

- In the digital domain, if sampled with N samples, a symbol: $T_{samp} = T_s/N$
- The time becomes discrete, $t = nT_{samp}$, and then:

$$f_{ck}t = \left(\frac{k}{T_S}\right)n(T_S/N) = kn/N$$
$$s[n] = \sum_{\substack{N=1\\N \notin \overline{1}^0}}^{N-1} a_k e^{\frac{j2\pi kn}{N}} rect \left[\frac{n-\frac{N}{2}}{N}\right]$$
$$s[n] = \sum_{\substack{k=0\\k=0}}^{N \notin \overline{1}^0} a_k e^{j\frac{2\pi}{N}kn} n \in [0, N-1]$$

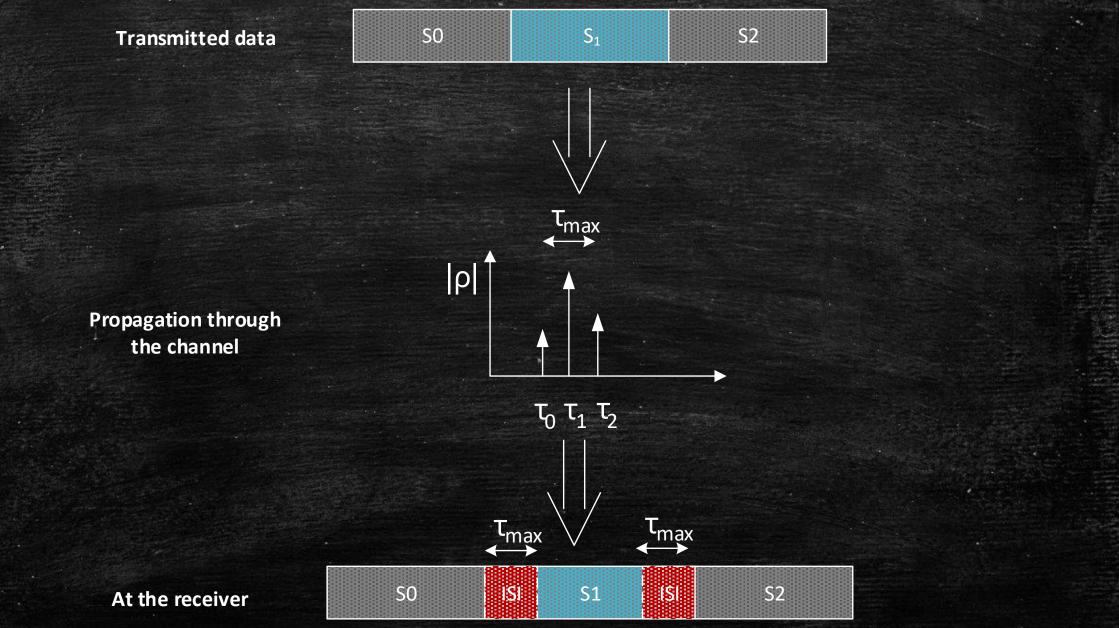
Looking carefully to the expression achieved before:

- It matches with the IDFT of $a_k!$

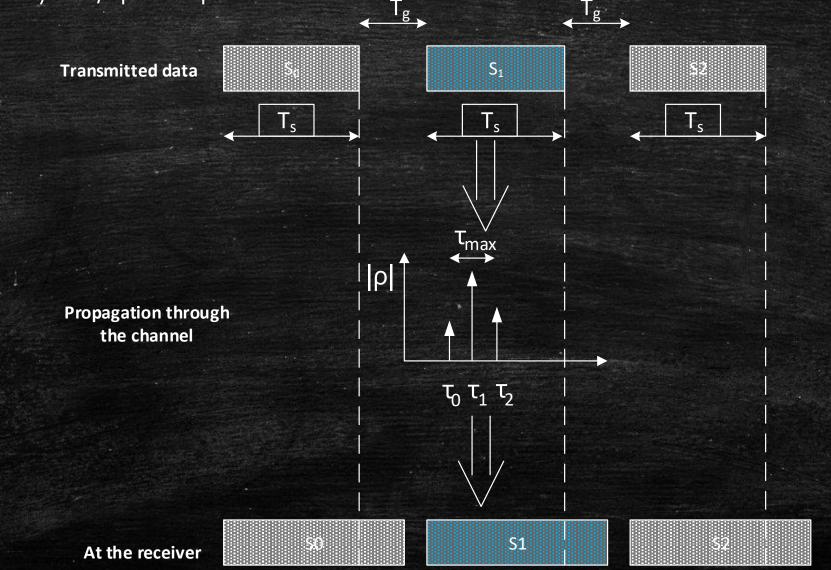
$$s[n] = \sum_{k=0}^{N-1} a_k e^{j\frac{2\pi}{N}kn} = IDFT[a_k]$$

- Every a_k represents the amplitude and phase of the carriers
- We are coming form the frequency domain to the time domain
 - Every block previous to the IDFT in an OFDM system belongs to the frequency domain
 - Every block after the IDFT in an OFDM system belongs to the time domain

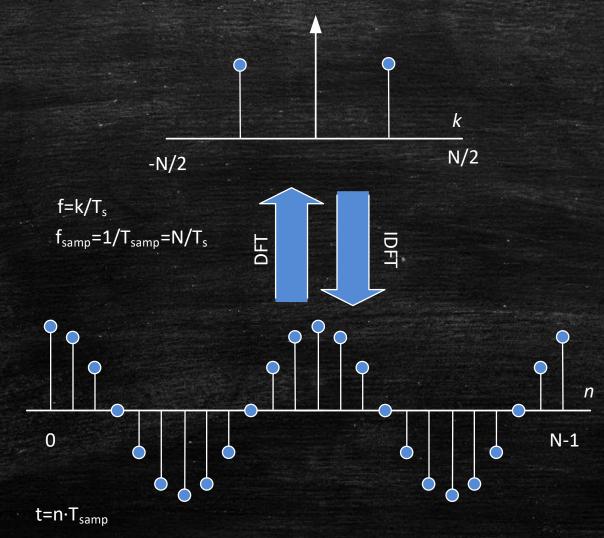
There is still a problem to be solved: ISI



- With a longer symbol time the ISI is reduced (in %) but the problem still exists
 - A possible solution is to insert a guard period between symbols
 - Capacity loss, spread spectrum

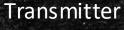


- Another way to cope with ISI is the cyclic prefix
 - DFT and IDFT are applied to periodic signals
 - The result of the IDFT is a period of a periodic signal in time

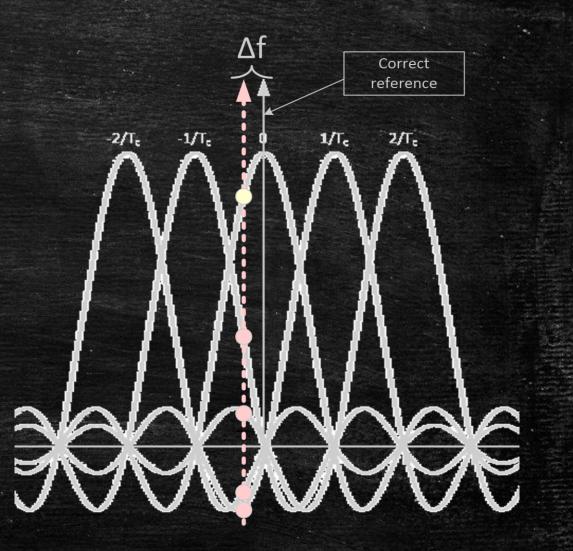


 The cyclic prefix consists in taking the last N_{cp} samples of the signal and copy it at the beginning of the symbol at the receiver these samples are discarded

Reduces the capacity but doesn't spread the spectrum



- There is an additional problem with OFDM
 - The frequency reference in both transmitter and receiver are not usually exactly same (oscillators deviations, mismatching of the elements ...)
 - This leads to a orthogonality loss because the sampling instant is not exactly in the maximum (and cero of the other carriers)
 - This is additional interference coming from other carriers (ICI)



THANKS!

Any questions?

Darío Alfonso Pérez-Calderón Rodríguez dperez@gas-granat.ru

