
Basic mathematics 

Applied in DTV systems 



Definitions

▪ The information can be expressed as a function of time, 𝑥(𝑡)

▪ A periodic function is defined mathematically as
𝑥 𝑡 = 𝑥 𝑡 + 𝑇0 ∀𝑡 ∈ ℜ

– Periodic functions as sine and cosine will be the basic functions for 
communication systems

▪ If a function of time carries information it is called signal

▪ A signal 𝑥 𝑡 can be transmitted as voltage, current, etc.
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▪ The energy of a signal is defined as 

𝐸 = න
−∞

∞

𝑥 𝑡 2 𝑑𝑡

▪ There are signals with 𝐸 =∞, as periodic signals for them it is defined the 
average power: 

𝑃 = lim
𝑇0→∞

1

2𝑇0
න
−𝑇0

𝑇0

𝑥 𝑡 2 𝑑𝑡

▪ Signals can be classified in 

– Energy signals: 0 < 𝐸 < ∞

– Power signals:  0 < 𝑃 < ∞



▪ For discrete systems the energy can be expressed as

𝐸 = 

𝑛=−∞

∞

𝑥 𝑛 2

▪ A periodic signal will have a period of 𝑁0 samples

𝑥 𝑛 = 𝑥 𝑛 + 𝑁0 ∀ 𝑛 ∈ ℤ

▪ Its power can be expressed as

𝐸 = lim
𝑁0→∞

1

2𝑁0 + 1


𝑛=−𝑁0

𝑁0

𝑥 𝑛 2



▪ A very important function in 
telecommunications is Dirac delta

– Mathematically defined as 

𝛿(𝑡) ቊ
+∞, 𝑡 = 0
0, 𝑡 ≠ 0

– Like a rectangle of height 1/𝜏 and width 𝜏
when 𝜏 → 0

– Its area is unity

න
−∞

+∞

𝛿 𝑡 𝑑𝑡 = 1

τ 

1/τ 

t



▪ The discrete version of the Dirac delta 
is much simpler

𝛿[𝑛] ቊ
1, 𝑛 = 0
0, 𝑛 ≠ 0

▪ It has the equivalent characteristics of 
the continuous one



▪ Heaviside step function
– Is defined as the primitive of the Dirac delta

𝑢 𝑡 = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏 = ቊ
1, 𝑡 ≥ 0
0, 𝑡 < 0

▪ The Dirac delta allows to define the derivative of 
noncontinuous functions:

𝛿 𝑡 =
𝑑𝑢(𝑡)

𝑑𝑡



▪ The discrete version of the 
Heaviside step is defined as 

𝑢[𝑛] = ቊ
1, 𝑛 ≥ 0
0, 𝑛 < 0



▪ The sinc function
– Mathematically defined as

𝑠𝑖𝑛𝑐 𝑡 =
sin(𝜋𝑡)

𝜋𝑡
– This function is one of the most used in 

communications

– The function takes value of 1 for 𝑡 = 0

lim
𝑡→0

𝑠𝑖𝑛𝑐 𝑡 = lim
𝑡→0

sin(𝜋𝑡)

𝜋𝑡

= ቝ
𝜋 cos 𝜋𝑡

𝜋

𝑡=0

= 1

– Its zeros are in ±𝑘𝜋



Convolution

▪ Signals can be added, subtracted, multiplied …

▪ Temporal shift: 𝑦 𝑡 = 𝑥(𝑡 − 𝑡0)

X(t)

t

y(t)

t

t0>0

t0

y(t)

t

t0<0

t0



▪ Temporal inversion: 𝑦 𝑡 = 𝑥(−𝑡)

X(t)

t

y(t)

t



▪ Convolution: 𝑧 𝑡 = 𝑥 𝑡 ⨂𝑦 𝑡 = ∞−
∞
𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏

– Commutative property: 𝑥 𝑡 ⨂𝑦 𝑡 = 𝑦 𝑡 ⨂𝑥 𝑡

𝑦 𝑡 ⨂𝑥 𝑡 = න
−∞

∞

𝑦 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
𝛼=𝑡−𝜏

න
−∞

∞

𝑦 𝑡 − 𝛼 𝑥 𝛼 𝑑𝛼 =

= 𝑥 𝑡 ⨂𝑦 𝑡

– Associative property: 
𝑥 𝑡 ⨂𝑦 𝑡 ⨂𝑧 𝑡 = 𝑥 𝑡 ⨂[𝑦 𝑡 ⨂𝑧 𝑡 ]

– Distributive property: 
𝑥 𝑡 ⨂ 𝑦 𝑡 + 𝑧 𝑡 = 𝑥 𝑡 ⨂𝑦 𝑡 + 𝑥 𝑡 ⨂𝑧 𝑡

– Differentiation:
𝑑

𝑑𝑡
𝑥 𝑡 ⨂𝑦 𝑡 =

𝑑𝑥 𝑡

𝑑𝑡
⨂𝑦 𝑡 =

𝑑𝑦 𝑡

𝑑𝑡
⨂𝑥 𝑡

– Area:

න
−∞

∞

𝑥 𝑡 ⨂𝑦 𝑡 𝑑𝑡 = න
−∞

∞

𝑥 𝑡 𝑑𝑡න
−∞

∞

𝑦 𝑡 𝑑𝑡



▪ Graphic example of convolution

𝑥 𝑡 ⨂𝑦(𝑡) =

0, 𝑡 < −7

𝐴2 𝑡 + 7 , −7 ≤ 𝑡 < 0

7𝐴2, 0 ≤ 𝑡 < 3

−𝐴2 𝑡 − 10 , 3 ≤ 𝑡 < 10
0, 0 ≤ 𝑡

-5 50 τ

x(τ)

-2 50 τ

y(τ)

2-5 0 τ

y(-τ)

-5 50 τ

x(τ )

-7-20 10

y(-τ-7)y(-τ-20) y(-τ+10)y(-τ)

-5 50 t

x(t) y(t)

-7 10



▪ The convolution of a signal with a Dirac delta results in the same 
signal

𝑥 𝑡 ∗ 𝛿 𝑡 = න
−∞

+∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑥(𝑡)

▪ If the Dirac delta has an offset in time the resulting convolution will 
have the same temporal offset

𝑥 𝑡 ∗ 𝛿 𝑡 − 𝑡0 = න
−∞

+∞

𝑥 𝜏 𝛿 𝑡 − 𝑡0 − 𝜏 𝑑𝜏 = 𝑥(𝑡 − 𝑡0)



▪ The discrete convolution between two sequences 𝑥 𝑛 and y 𝑛 can be 
described as

𝑧 𝑛 = 𝑥 𝑛 ⨂𝑦 𝑛 = 

𝑛=−∞

∞

𝑥 𝑘 𝑦 𝑛 − 𝑘

▪ The length of the resulting sequence will be always the addition of the 
length of the convolved sequences minus 1



▪ Analytical way of proceeding
𝑥 𝑛 = 0 0 1 1 1 0 0 ; 𝑦 𝑛 = 0 0 0 0 0 1 1 1 1 1 0 0

k -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
z[k]

y[k] 0 0 0 0 0 1 1 1 1 1 0 0

x[-k] 0 0 1 1 1 0 0 0

x[1-k] 0 0 1 1 1 0 0 0

x[2-k] 0 0 1 1 1 0 0 0

x[3-k] 0 0 1 1 1 0 0 0

x[4-k] 0 0 1 1 1 0 0 0

x[5-k] 0 0 1 1 1 0 0 0

x[6-k] 0 0 1 1 1 0 0 0

x[7-k] 0 0 1 1 1 0 0 1

x[8-k] 0 0 1 1 1 0 0 2

x[9-k] 0 0 1 1 1 0 0 3

x[10-k] 0 0 1 1 1 0 0 3

x[11-k] 0 0 1 1 1 0 0 3

x[12-k] 0 0 1 1 1 0 0 2

x[13-k] 0 0 1 1 1 0 0 1



The Fourier Transform

▪ Mathematically the Fourier transform of 
a signal 𝑥(𝑡)

▪ 𝑋 𝑓 = ℱ 𝑥 𝑡 = 
−∞

∞
𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

▪ 𝑥(𝑡) must verify the Dirichlet condition:

– Have a finite number of maximum, 
minimum, and discontinuities in a 
finite interval

– Must be an energy signal



▪ The reverse Fourier transform has the following expression

𝑥 𝑡 = ℱ−1 𝑋 𝑓 = න
−∞

∞

𝑋 𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

▪ Reverse Fourier transform allows to represent the signal in time 
as the weighted addition of complex exponentials 

▪ Also if 𝑥 𝑡 is a real signal, 𝑋 −𝑓 = 𝑋∗ 𝑓

𝑋 −𝑓 = න
−∞

∞

𝑥 𝑡 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑡 = න
−∞

∞

𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

∗

= 𝑋∗ 𝑓



▪ Fourier transform of a rectangular pulse

𝑋 𝑓 = න
−𝑇0/2

𝑇0/2

𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 =
𝑇0 sin 𝜋𝑓𝑇0

𝜋𝑓𝑇0
= 𝑇0𝑠𝑖𝑛𝑐(𝑓𝑇0)

▪ Energy signals have their energy continuously distributed along the 
spectrum and not allocated in discrete frequencies



▪ The Fourier transform is linear, 𝑋 𝑓 = ℱ 𝑥 𝑡 and 𝑌 𝑓 =
ℱ 𝑦 𝑡 : ℱ 𝑎𝑥 𝑡 + 𝑏𝑦(𝑡) = 𝑎𝑋 𝑓 + 𝑏𝑌 𝑓

ℱ 𝑎𝑥 𝑡 + 𝑏𝑦(𝑡) = න
−∞

∞

[𝑎𝑥 𝑡 + 𝑏𝑦(𝑡)]𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

= 𝑎න
−∞

∞

𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 + 𝑏න
−∞

∞

𝑦 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 = 𝑎𝑋 𝑓 + 𝑏𝑌 𝑓

▪ Duality property
𝑦 𝑓 = ℱ 𝑥 𝑡 = 𝑋 𝑓 ֞𝑥 −𝑓 = ℱ 𝑦 𝑡 = 𝑌(𝑓)

ℱ 𝑦 𝑡 = න
−∞

∞

ℱ 𝑥 𝜏 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

= න
−∞

∞

𝑋(𝑡) 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
𝐹=−𝑓

න
−∞

∞

𝑋(𝑡) 𝑒𝑗2𝜋𝐹𝑡𝑑𝑡 = 𝑥 𝐹 = 𝑥(−𝑓)



▪ Time and frequency delay
𝑥 𝑡 − 𝑡0 ֞𝑋 𝑓 𝑒𝑗2𝜋𝑓𝑡0

𝑥 𝑡 𝑒𝑗2𝜋𝑡𝑓0֞𝑋 𝑓 − 𝑓0

▪ Convolution and product properties
𝑥 𝑡 ⨂𝑦(𝑡)֞𝑋 𝑓 𝑌(𝑓)
𝑥 𝑡 𝑦 𝑡 ֞𝑋 𝑓 ⨂𝑌 𝑓

ℱ 𝑥 𝑡 ⨂𝑦(𝑡) = න
−∞

∞

𝑥 𝑡 ⨂𝑦 𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 = න
−∞

∞

න
−∞

∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

= න
−∞

∞

න
−∞

∞

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑒−𝑗2𝜋𝑓𝑡𝑑𝜏𝑑𝑡
𝜆=𝑡−𝜏

න
−∞

∞

න
−∞

∞

𝑥 𝜏 𝑦 𝜆 𝑒−𝑗2𝜋𝑓(𝜆+𝜏)𝑑𝜏𝑑𝜆 =

න
−∞

∞

𝑥 𝜏 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏න
−∞

∞

𝑦 𝜆 𝑒−𝑗2𝜋𝑓𝜆𝑑𝜆 = 𝑋 𝑓 𝑌(𝑓)



▪ Transform of the derivative of a function:

𝑑𝑥 𝑡

𝑑𝑡
֞𝑗2𝜋𝑓𝑋 𝑓

𝑑𝑥 𝑡

𝑑𝑡
=
𝑑ℱ−1 𝑋(𝑓)

𝑑𝑡
=

𝑑

𝑑𝑡
න
−∞

∞

𝑋 𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 = න
−∞

∞

𝑗2𝜋𝑓𝑋 𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

▪ Transform of the conjugate of a function: 
𝑥∗ 𝑡 ֞𝑋∗ −𝑓

ℱ 𝑥∗ 𝑡 = න
−∞

∞

𝑥∗ 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 = න
−∞

∞

𝑥∗ 𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

∗
∗

= න
−∞

∞

𝑥 𝑡 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑡

∗
𝐹=−𝑓

න
−∞

∞

𝑥 𝑡 𝑒−𝑗2𝜋𝐹𝑡 𝑑𝑡

∗

= 𝑋∗ 𝐹 = 𝑋∗(−𝑓)



▪ Time scaling: 

𝑥 𝑎𝑡 ֞
1

𝑎
𝑋

𝑓

𝑎

ℱ 𝑥 𝑎𝑡 = න
−∞

∞

𝑥 𝑎𝑡 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡
𝑎𝑡=𝜏

=
1

𝑎
න
−∞

∞

𝑥 𝜏 𝑒−𝑗2𝜋
𝑓
𝑎𝜏 𝑑𝜏 =

1

𝑎
𝑋(
𝑓

𝑎
)

– This is only valid if  𝑎 > 0, If 𝑎 is a negative number also the limits  
change introducing an extra minus symbol and that’s why the final result 
is divided by 𝑎



▪ We have already stated that periodical functions are very important 
in communications, but they don’t meet the Dirichlet conditions, 
they are power signals

▪ We use for them the Fourier series

𝑥 𝑡 = 

𝑘=−∞

∞

𝑐𝑘𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡

▪ Existing a univocal relation between  𝑥 𝑡 and 𝑐𝑘

𝑐𝑘 =
1

𝑇0
න
0

𝑇0

𝑥 𝑡 𝑒
−𝑗

2𝜋
𝑇0
𝑘𝑡
𝑑𝑡



▪ Example : 𝑥 𝑡 = sin 𝑤0𝑡 = sin
2𝜋

𝑇0
𝑡

sin
2𝜋

𝑇0
𝑡 = −

𝑗

2
𝑒
𝑗
2𝜋
𝑇0
𝑡
− 𝑒

−𝑗
2𝜋
𝑇0
𝑡

𝑐𝑘 =

−
𝑗

2
, 𝑘 = 1

𝑗

2
, 𝑘 = −1

0, ∀𝑘 ≠ ±1

▪ Here we applied the definition of 𝑥 𝑡 being the addition of weighted 
complex exponentials and a trigonometry equality 



▪ Example: periodic square signal

𝑥 𝑡 = ൞
1, −

𝑇0

2
≤ 𝑡 < 0

−1, 0 ≤ 𝑡 <
𝑇0

2

𝑐𝑘 = ቐ
2

𝑗𝜋𝑘
, 𝑘 = ±1,±3,±5,…

0, 𝑘 = 0,±2,±4,…

▪ Every periodic signal can be represented in frequency as its 
different 𝑐𝑘 amplitudes at their corresponding frequency

T0/2 t

-T0/2

x(t) X(f)

fT0
1  3  5   -5 -3 -1



▪ If 𝑥(𝑡) is real 𝑐𝑘
∗ = 𝑐−𝑘

𝑐𝑘
∗ =

1

𝑇0
න
0

𝑇0

𝑥 𝑡 𝑒
−𝑗

2𝜋
𝑇0
𝑘𝑡
𝑑𝑡

∗

=
1

𝑇0
න
0

𝑇0

𝑥 𝑡 𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡
𝑑𝑡 = 𝑐−𝑘

▪ If we gather the positive and negative values of k 

𝑐𝑘𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡
+ 𝑐−𝑘𝑒

−𝑗
2𝜋
𝑇0
𝑘𝑡
= 𝑐𝑘𝑒

𝑗
2𝜋
𝑇0
𝑘𝑡
+ 𝑐𝑘

∗ 𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡

∗

= 2ℜ𝑒 𝑐𝑘𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡

= 2 𝑐𝑘 cos
2𝜋

𝑇0
𝑘𝑡 + 𝛼𝑘

▪ Where 𝑐𝑘 and 𝛼𝑘 represent the module and phase of 𝑐𝑘



▪ The expression for 𝑥(𝑡) can be rewritten as

𝑥 𝑡 = 

𝑘=−∞

∞

𝑐𝑘𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡
= 𝑐0 +

𝑘=1

∞

𝑐𝑘𝑒
𝑗
2𝜋
𝑇0
𝑘𝑡
+ 𝑐−𝑘𝑒

−𝑗
2𝜋
𝑇0
𝑘𝑡
= 𝑐0 + 2

𝑘=1

∞

𝑐𝑘 cos
2𝜋

𝑇0
𝑘𝑡 + 𝛼𝑘

= 𝑐0 + 2

𝑘=1

∞

𝑎𝑘cos
2𝜋

𝑇0
𝑘𝑡 + 𝑏𝑘 sin

2𝜋

𝑇0
𝑘𝑡

▪ Where

𝑎𝑘 =
1

𝑇0

0

𝑇0 𝑥 𝑡 cos
2𝜋

𝑇0
𝑘𝑡 𝑑𝑡 𝑏𝑘 =

1

𝑇0

0

𝑇0 𝑥 𝑡 sin
2𝜋

𝑇0
𝑘𝑡 𝑑𝑡

▪ 𝑐0 represents the average value of 𝑥(𝑡), 𝑓1 = 1/𝑇0 represents the 
fundamental frequency of the signal and the rest of them the different 
harmonics



▪ As an example, different number of harmonics of a square pulse



▪ For energy signals the energy can be calculated as:

𝐸 = න
−∞

∞

𝑥 𝑡 2𝑑𝑡 =න
−∞

∞

𝑋 𝑓 2𝑑𝑓

▪ For power signals:

𝑃 =
1

𝑇0
න
0

𝑇0

𝑥 𝑡 2𝑑𝑡 =

−∞

∞

𝑐𝑘
2



▪ In digital systems we apply what is called DFT: Discrete Fourier Transform
– Do not confuse with DTFT (Discrete Time Fourier Transform) that is discrete in time (𝑥 𝑛 ), 

but continuous in frequency 

𝑋 𝑘 = 

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑗
2𝜋
𝑁
𝑘𝑛

– Where 𝑁 is the number of samples of the signal used

▪ The inverse Fourier transform has the following expression

𝑥 𝑛 =
1

𝑁


𝑘=0

𝑁−1

𝑋 𝑘 𝑒𝑗
2𝜋
𝑁
𝑘𝑛



▪ The DFT spectrum is periodic with period 𝑁

▪ The maximum frequency that can be represented 
is the sampling frequency, inverse of the sampling 
time , 𝐹𝑠 = 1/𝑇𝑠

▪ The frequency resolution will be 𝐹𝑠/𝑁

▪ Example: 𝑥 𝑛 = 1 1 1 1 1



▪ But what if we change a bit the example? 𝑥 𝑛 = 1 1 1 1 1 0 0 0 0 0

▪ This technique is known as zero padding and changes the resolution in the 
frequency axis but not the frequency resolution of the spectral 
components that are dependent only of the 𝑀 non zero samples



▪ If we further increase the zero padding to 100 samples



Sampling and quantization

▪ In nature as we perceive it, physical magnitudes that can be 
measured are

– Continuous in time 

– Continuous in amplitude

▪ We live in the analogue “world”

▪ But to work with computers, microprocessors, etc. we cannot have a 
infinite accuracy, we work with bits (representing float, integer, …)

▪ A variable is digital when only can take certain values of a finite 
group, 𝑥𝐷 ∈ 𝑋𝐷 𝑥0, 𝑥1, 𝑥2, …
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▪ As an example, a natural binary variable of 8 bits 𝑥𝐷 ∈
𝑋𝐷 0,1,2,… , 255

▪ The possible values can be ordered following a sequence so 
each value is represented by the place it occupies, 𝑥𝐷 = 𝑥𝐷[𝑛]

▪ If the 𝑛 index represents an ordered temporal occurrence, then 
𝑥𝐷 is a digital signal

▪ It is possible to represent a signal 𝑥(𝑡) by means of a sequence 
of numbers  𝑥𝐷 = 𝑥𝐷[𝑛]



▪ The resulting digital signal 

– Is discrete and each index 𝑛 represents a time instant

– Is discrete, takes values from a finite set

– Can be digitally stored

▪ In order to digitalize a signal two operations must be performed: 
sampling and quantization

▪ A digital signal 𝑥𝐷 = 𝑥𝐷[𝑛], under certain conditions can be 
transformed again into the original 𝑥 𝑡

– To get the digital version, 𝑥𝐷, ADC are used

– To transform a digital signal into analogue, DAC are used   



▪ Sampling a signal is to register its value every certain period of time

▪ Usually the time between samples, sampling time (𝑇𝑠), is constant 
and defines also the sampling frequency (𝑓𝑠 = 1/𝑇𝑠)

t

n

Ts

x(t)

xS=xS[n]

xS=xS[n]=x(nTs)

0    1    2    3    5    6    7    8    9    10  11  12  13  



▪ As said previously the digital signals have a finite number of 
possible values, 𝑥𝐷 ∈ 𝑋𝐷, usually the sampled values will not 
correspond with one of these possible values

▪ It will be necessary to assign one of them to the sample 
following some strategy

▪ In general it can be said that  𝑥𝐷 = 𝑄 𝑥 𝑛𝑇𝑠 = 𝑄(𝑥𝑆[𝑛]), and 
𝑄 · can take different forms

– Round

– Truncate 

– … 



▪ Linear quantifiers have a stair shaped output form like the following

▪ ∆ represents the 
quantization step 

▪ In the example 3 bits 
quantization is used

▪ The example uses the 
following quantization rule:

𝑄 𝑥 = ∆
𝑥

∆
+
1

2

▪ 0 cannot be represented
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▪ By quantifying the signal we are introducing an error

▪ The error we introduce is 
the difference between 
output and input, 𝑒 =
𝑦 − 𝑥 = 𝑄 𝑥 − 𝑥

▪ Inside the quantization 
interval the error is 
bounded in the interval 
−∆/2, ∆/2

▪ In general ∆=
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑚
, 

where m represents the 
number of bits used in 
the quantization
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