Basic mathematics

Applied in DTV systems

Definitions

- The information can be expressed as a function of time, x(t)
- A periodic function is defined mathematically as $x(t) = x(t + T_0) \ \forall t \in \Re$
 - Periodic functions as sine and cosine will be the basic functions for communication systems
- If a function of time carries information it is called signal
- A signal x(t) can be transmitted as voltage, current, etc.

The energy of a signal is defined as

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

There are signals with E = ∞, as periodic signals for them it is defined the average power:

$$P = \lim_{T_0 \to \infty} \frac{1}{2T_0} \int_{-T_0}^{T_0} |x(t)|^2 dt$$

- Signals can be classified in
 - Energy signals: $0 < E < \infty$
 - Power signals: $0 < P < \infty$

- For discrete systems the energy can be expressed as $E = \sum_{n=1}^{\infty} |x[n]|^2$
- A periodic signal will have a period of N₀ samples

 $x[n] = x[n + N_0] \forall n \in \mathbb{Z}$

 $n = -\infty$

Its power can be expressed as

$$E = \lim_{N_0 \to \infty} \frac{1}{2N_0 + 1} \sum_{n = -N_0}^{N_0} |x[n]|^2$$

 $1/\tau$

 $\int_{-\infty}^{+\infty} \delta(t) dt = 1$

 The discrete version of the Dirac delta is much simpler

$$\delta[n] \begin{cases} 1, & n = 0\\ 0, & n \neq 0 \end{cases}$$

 It has the equivalent characteristics of the continuous one

Heaviside step function

- Is defined as the primitive of the Dirac delta $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau = \begin{cases} 1, t \ge 0\\ 0, t < 0 \end{cases}$

• The Dirac delta allows to define the derivative of noncontinuous functions: $\delta(t) = \frac{du(t)}{dt}$

• The discrete version of the Heaviside step is defined as $u[n] = \begin{cases} 1, n \ge 0\\ 0, n < 0 \end{cases}$

- The sinc function
 - Mathematically defined as $sinc(t) = \frac{sin(\pi t)}{\pi t}$
 - This function is one of the most used in communications
 - The function takes value of 1 for t = 0 $\lim_{t \to 0} \operatorname{sinc}(t) = \lim_{\substack{t \to 0 \\ \pi}} \frac{\sin(\pi t)}{\pi t}$ $= \frac{\pi \cos(\pi t)}{\pi} = 1$
 - Its zeros are in $\pm k\pi$

Convolution

- Signals can be added, subtracted, multiplied ...
- Temporal shift: $y(t) = x(t t_0)$

• Temporal inversion: y(t) = x(-t)

- Convolution: $z(t) = x(t) \otimes y(t) = \int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$
 - Commutative property: $x(t) \otimes y(t) = y(t) \otimes x(t)$

$$y(t) \otimes x(t) = \int_{-\infty}^{\infty} y(\tau) x(t-\tau) d\tau \underset{\alpha=t-\tau}{\Longrightarrow} \int_{-\infty}^{\infty} y(t-\alpha) x(\alpha) d\alpha =$$
$$= x(t) \otimes y(t)$$

- Associative property: $[x(t) \otimes y(t)] \otimes z(t) = x(t) \otimes [y(t) \otimes z(t)]$
- Distributive property: $x(t)\otimes[y(t) + z(t)] = [x(t)\otimes y(t)] + [x(t)\otimes z(t)]$
- Differentiation:

$$\frac{d}{dt}[x(t)\otimes y(t)] = \frac{dx(t)}{dt}\otimes y(t) = \frac{dy(t)}{dt}\otimes x(t)$$

– Area:

$$\int_{-\infty}^{\infty} x(t) \otimes y(t) dt = \int_{-\infty}^{\infty} x(t) dt \int_{-\infty}^{\infty} y(t) dt$$

The convolution of a signal with a Dirac delta results in the same signal

$$x(t) * \delta(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t-\tau)d\tau = x(t)$$

 If the Dirac delta has an offset in time the resulting convolution will have the same temporal offset

$$x(t) * \delta(t-t_0) = \int_{-\infty}^{+\infty} x(\tau)\delta(t-t_0-\tau)d\tau = x(t-t_0)$$

 The discrete convolution between two sequences x[n] and y[n] can be described as

$$z[n] = x[n] \otimes y[n] = \sum_{n=-\infty}^{\infty} x[k]y[n-k]$$

 The length of the resulting sequence will be always the addition of the length of the convolved sequences minus 1

• Analytical way of proceeding $x[n] = [0\ 0\ 1\ 1\ 1\ 0\ 0]; \ y[n] = [0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0]$

k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	-51/1
y[k]							0	0	0	0	0	1	1	1	1	1	0	0							Z[K]
x[-k]	0	0	1	1	1	0	0	H H										Alexandra Alexandra							0
x[1-k]		0	0	1	1	1	0	0	4														Re-		0
x[2-k]			0	0	1	1	1	0	0																O
x[3-k]	**			0	0	1	1	1	0	0															0
x[4-k]					0	0	1	1	1	0	0														0
x[5-k]					100 a	0	0	1	1	1	0	0									*				0
x[6-k]							0	0	1	1	1	0	0												0
x[7-k]								0	0	1	1	1	0	0											1
x[8-k]									0	0	1	1	1	0	0										2
x[9-k]										0	0	1	1	1	0	0									3
x[10-k]											0	0	1	1	1	0	0								3
x[11-k]												0	0	1	1	1	0	0							3
x[12-k]													0	0	1	1	1	0	0						2
x[13-k]														0	0	1	1	1	0	0					1

The Fourier Transform

- Mathematically the Fourier transform of a signal x(t)
- $X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$
- x(t) must verify the Dirichlet condition:
 - Have a finite number of maximum, minimum, and discontinuities in a finite interval
 - Must be an energy signal

• The reverse Fourier transform has the following expression $x(t) = \mathcal{F}^{-1}\{X(f)\} = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$

 Reverse Fourier transform allows to represent the signal in time as the weighted addition of complex exponentials

• Also if
$$x(t)$$
 is a real signal, $X(-f) = X^*(f)$

$$X(-f) = \int_{-\infty}^{\infty} x(t)e^{j2\pi ft} dt = \left(\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt\right)^* = X^*(f)$$

Fourier transform of a rectangular pulse

 Energy signals have their energy continuously distributed along the spectrum and not allocated in discrete frequencies • The Fourier transform is linear, $X(f) = \mathcal{F}\{x(t)\}$ and $Y(f) = \mathcal{F}\{y(t)\}$: $\mathcal{F}\{ax(t) + by(t)\} = aX(f) + bY(f)$ $\mathcal{F}\{ax(t) + by(t)\} = \int_{-\infty}^{\infty} [ax(t) + by(t)]e^{-j2\pi ft} dt$ $= a \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt + b \int_{-\infty}^{\infty} y(t)e^{-j2\pi ft} dt = aX(f) + bY(f)$

Duality property $y(f) = \mathcal{F}\{x(t)\} = X(f) \Leftrightarrow x(-f) = \mathcal{F}\{y(t)\} = Y(f)$ $\mathcal{F}\{y(t)\} = \int_{-\infty}^{\infty} \mathcal{F}\{x(\tau)\} \ e^{-j2\pi ft} dt$ $= \int_{-\infty}^{\infty} X(t) \ e^{-j2\pi ft} dt \xrightarrow{F=-f} \int_{-\infty}^{\infty} X(t) \ e^{j2\pi Ft} dt = x(F) = x(-f)$

• Time and frequency delay $x(t-t_0) \Leftrightarrow X(f)e^{j2\pi ft_0}$ $x(t)e^{j2\pi tf_0} \Leftrightarrow X(f-f_0)$

• Convolution and product properties $x(t) \otimes y(t) \Leftrightarrow X(f)Y(f)$ $x(t)y(t) \Leftrightarrow X(f) \otimes Y(f)$ $\mathcal{F}\{x(t) \otimes y(t)\} = \int_{-\infty}^{\infty} x(t) \otimes y(t) e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)y(t-\tau) d\tau e^{-j2\pi f t} dt$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)y(t-\tau) e^{-j2\pi f t} d\tau dt \xrightarrow{\lambda=t-\tau}$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)y(\lambda) e^{-j2\pi f(\lambda+\tau)} d\tau d\lambda =$ $\int_{-\infty}^{\infty} x(\tau)e^{-j2\pi f \tau} d\tau \int_{-\infty}^{\infty} y(\lambda) e^{-j2\pi f \lambda} d\lambda = X(f)Y(f)$ Transform of the derivative of a function:

$$\frac{dx(t)}{dt} = \frac{d\mathcal{F}^{-1}\{X(f)\}}{dt} = \frac{d}{dt} \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df = \int_{-\infty}^{\infty} j2\pi f X(f) e^{j2\pi ft} df$$

• Transform of the conjugate of a function: $x^*(t) \Leftrightarrow X^*(-f)$

$$\mathcal{F}\left\{x^{*}(t)\right\} = \int_{-\infty}^{\infty} x^{*}(t)e^{-j2\pi ft} dt = \left(\left(\int_{-\infty}^{\infty} x^{*}(t)e^{-j2\pi ft} dt\right)^{*}\right)^{*}$$
$$= \left(\int_{-\infty}^{\infty} x(t)e^{j2\pi ft} dt\right)^{*} \stackrel{F=-f}{\Longrightarrow} \left(\int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft} dt\right)^{*} = X^{*}(F) = X^{*}(-f)$$

Time scaling:

$$x(at) \Leftrightarrow \frac{1}{|a|} X\left(\frac{f}{a}\right)$$
$$\mathcal{F}\left\{x(at)\right\} = \int_{-\infty}^{\infty} x(at)e^{-j2\pi ft} dt \stackrel{at=\tau}{\Longrightarrow} = \frac{1}{a} \int_{-\infty}^{\infty} x(\tau)e^{-j2\pi \frac{f}{a}\tau} d\tau = \frac{1}{a} X(\frac{f}{a})$$

– This is only valid if a > 0, If a is a negative number also the limits change introducing an extra minus symbol and that's why the final result is divided by |a|

- We have already stated that periodical functions are very important in communications, but they don't meet the Dirichlet conditions, they are power signals
- We use for them the Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi}{T_0}kt}$$

• Existing a univocal relation between x(t) and c_k $c_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\frac{2\pi}{T_0}kt} dt$

• Example:
$$x(t) = \sin(w_0 t) = \sin\left(\frac{2\pi}{T_0}t\right)$$

 $\sin\left(\frac{2\pi}{T_0}t\right) = -\frac{j}{2}\left[e^{j\frac{2\pi}{T_0}t} - e^{-j\frac{2\pi}{T_0}t}\right]$
 $c_k = \begin{cases} -\frac{j}{2}, \quad k = 1\\ \frac{j}{2}, \quad k = -1\\ 0, \quad \forall k \neq +1 \end{cases}$

 Here we applied the definition of x(t) being the addition of weighted complex exponentials and a trigonometry equality Example: periodic square signal

$$x(t) = \begin{cases} 1, -\frac{T_0}{2} \le t < 0\\ -1, 0 \le t < \frac{T_0}{2} \end{cases} \quad c_k = \begin{cases} \frac{2}{j\pi k}, k = \pm 1, \pm 3, \pm 5, \dots\\ 0, k = 0, \pm 2, \pm 4, \dots \end{cases}$$

 Every periodic signal can be represented in frequency as its different c_k amplitudes at their corresponding frequency

• If
$$x(t)$$
 is real $c_k^* = c_{-k}$
 $c_k^* = \left(\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\frac{2\pi}{T_0}kt} dt\right)^* = \frac{1}{T_0} \int_0^{T_0} x(t) e^{j\frac{2\pi}{T_0}kt} dt = c_{-k}$

If we gather the positive and negative values of k $c_{k}e^{j\frac{2\pi}{T_{0}}kt} + c_{-k}e^{-j\frac{2\pi}{T_{0}}kt} = c_{k}e^{j\frac{2\pi}{T_{0}}kt} + c_{k}^{*}\left(e^{j\frac{2\pi}{T_{0}}kt}\right)^{*}$ $= 2\Re e\left(c_{k}e^{j\frac{2\pi}{T_{0}}kt}\right) = 2|c_{k}|\cos\left(\frac{2\pi}{T_{0}}kt + \alpha_{k}\right)$

• Where $|c_k|$ and α_k represent the module and phase of c_k

• The expression for x(t) can be rewritten as

$$\begin{aligned} x(t) &= \sum_{k=\infty}^{\infty} c_k e^{j\frac{2\pi}{T_0}kt} = c_0 + \sum_{k=1}^{\infty} c_k e^{j\frac{2\pi}{T_0}kt} + c_{-k} e^{-j\frac{2\pi}{T_0}kt} = c_0 + 2\sum_{k=1}^{\infty} |c_k| \cos\left(\frac{2\pi}{T_0}kt + \alpha_k\right) \\ &= c_0 + 2\sum_{k=1}^{\infty} a_k \cos\left(\frac{2\pi}{T_0}kt\right) + b_k \sin\left(\frac{2\pi}{T_0}kt\right) \end{aligned}$$

Where

$$a_{k} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \cos\left(\frac{2\pi}{T_{0}} kt\right) dt \ b_{k} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \sin\left(\frac{2\pi}{T_{0}} kt\right) dt$$

• c_0 represents the average value of x(t), $f_1 = 1/T_0$ represents the fundamental frequency of the signal and the rest of them the different harmonics

• As an example, different number of harmonics of a square pulse

For energy signals the energy can be calculated as:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

For power signals:

$$P = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \sum_{-\infty}^{\infty} |c_k|^2$$

- In digital systems we apply what is called DFT: Discrete Fourier Transform
 - Do not confuse with DTFT (Discrete Time Fourier Transform) that is discrete in time (x[n]), but continuous in frequency

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

- Where N is the number of samples of the signal used
- The inverse Fourier transform has the following expression

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

The DFT spectrum is periodic with period N

- The maximum frequency that can be represented is the sampling frequency, inverse of the sampling time , $F_s = 1/T_s$
- The frequency resolution will be F_s/N
- Example: $x[n] = [1 \ 1 \ 1 \ 1 \ 1]$

• But what if we change a bit the example? $x[n] = [1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0]$

 This technique is known as zero padding and changes the resolution in the frequency axis but not the frequency resolution of the spectral components that are dependent only of the *M* non zero samples

If we further increase the zero padding to 100 samples

Sampling and quantization

- In nature as we perceive it, physical magnitudes that can be measured are
 - Continuous in time
 - Continuous in amplitude
- We live in the analogue "world"
- But to work with computers, microprocessors, etc. we cannot have a infinite accuracy, we work with bits (representing float, integer, ...)
- A variable is digital when only can take certain values of a finite group, x_D ∈ X_D [x₀, x₁, x₂, ...]

THANKS!

Any questions?

Darío Alfonso Pérez-Calderón Rodríguez dperez@gas-granat.ru

- As an example, a natural binary variable of 8 bits $x_D \in X_D [0,1,2, ..., 255]$
- The possible values can be ordered following a sequence so each value is represented by the place it occupies, $x_D = x_D[n]$
- If the *n* index represents an ordered temporal occurrence, then *x_D* is a digital signal
- It is possible to represent a signal x(t) by means of a sequence of numbers x_D = x_D[n]

- The resulting digital signal
 - Is discrete and each index n represents a time instant
 - Is discrete, takes values from a finite set
 - Can be digitally stored
- In order to digitalize a signal two operations must be performed: sampling and quantization
- A digital signal $x_D = x_D[n]$, under certain conditions can be transformed again into the original x(t)
 - To get the digital version, x_D , ADC are used
 - To transform a digital signal into analogue, DAC are used

- Sampling a signal is to register its value every certain period of time
- Usually the time between samples, sampling time (T_s), is constant and defines also the sampling frequency ($f_s = 1/T_s$)

- As said previously the digital signals have a finite number of possible values, $x_D \in X_D$, usually the sampled values will not correspond with one of these possible values
- It will be necessary to assign one of them to the sample following some strategy
- In general it can be said that $x_D = Q(x(nT_s)) = Q(x_S[n])$, and $Q(\cdot)$ can take different forms
 - Round

- Truncate

- Linear quantifiers have a stair shaped output form like the following
- Δ represents the quantization step
- In the example 3 bits quantization is used
- The example uses the following quantization rule: $Q(x) = \Delta \left(\left| \frac{x}{\Delta} \right| + \frac{1}{2} \right)$
- o cannot be represented

- By quantifying the signal we are introducing an error
- The error we introduce is the difference between output and input, e = y - x = Q(x) - x
- Inside the quantization interval the error is bounded in the interval [-Δ/2, Δ/2]
- In general $\Delta = \frac{x_{max} x_{min}}{2^m}$, where m represents the number of bits used in the quantization

