Basic mathematics

Applied in DTV systems

Definitions

- The information can be expressed as a function of time, $x(t)$
- A periodic function is defined mathematically as

$$
x(t)=x\left(t+T_{0}\right) \forall t \in \Re
$$

- Periodic functions as sine and cosine will be the basic functions for communication systems
- If a function of time carries information it is called signal
- A signal $x(t)$ can be transmitted as voltage, current, etc.

- The energy of a signal is defined as

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

- There are signals with $E=\infty$, as periodic signals for them it is defined the average power:

$$
P=\lim _{T_{0} \rightarrow \infty} \frac{1}{2 T_{0}} \int_{-T_{0}}^{T_{0}}|x(t)|^{2} d t
$$

- Signals can be classified in
- Energy signals: $0<E<\infty$
- Power signals: $0<P<\infty$
- For discrete systems the energy can be expressed as

$$
E=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

- A periodic signal will have a period of N_{0} samples

$$
x[n]=x\left[n+N_{0}\right] \forall n \in \mathbb{Z}
$$

- Its power can be expressed as

$$
E=\lim _{N_{0} \rightarrow \infty} \frac{1}{2 N_{0}+1} \sum_{n=-N_{0}}^{N_{0}}|x[n]|^{2}
$$

- A very important function in telecommunications is Dirac delta
- Mathematically defined as

$$
\delta(t) \begin{cases}+\infty, & t=0 \\ 0, & t \neq 0\end{cases}
$$

- The discrete version of the Dirac delta is much simpler

$$
\delta[n] \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

- It has the equivalent characteristics of the continuous one

- Heaviside step function
- Is defined as the primitive of the Dirac delta

$$
u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau=\left\{\begin{array}{l}
1, t \geq 0 \\
0, t<0
\end{array}\right.
$$

- The Dirac delta allows to define the derivative of noncontinuous functions:

$$
\delta(t)=\frac{d u(t)}{d t}
$$

- The discrete version of the Heaviside step is defined as

$$
u[n]=\left\{\begin{array}{l}
1, n \geq 0 \\
0, n<0
\end{array}\right.
$$

- The sinc function
- Mathematically defined as

$$
\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}
$$

- This function is one of the most used in communications
- The function takes value of 1 for $t=0$

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \sin c(t)=\lim _{t \rightarrow 0} \frac{\sin (\pi t)}{\pi t} \\
& =\left.\frac{\pi \cos (\pi t)}{\pi}\right|^{t=\hat{0}^{0}}=1
\end{aligned}
$$

- Its zeros are in $\pm k \pi$

Convolution

- Signals can be added, subtracted, multiplied ...
- Temporal shift: $y(t)=x\left(t-t_{0}\right)$

- Temporal inversion: $y(t)=x(-t)$

- Convolution: $z(t)=x(t) \otimes y(t)=\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau$
- Commutative property: $x(t) \otimes y(t)=y(t) \otimes x(t)$

$$
\begin{gathered}
y(t) \otimes x(t)=\int_{-\infty}^{\infty} y(\tau) x(t-\tau) d \tau \underset{\alpha=t-\tau}{ } \int_{-\infty}^{\infty} y(t-\alpha) x(\alpha) d \alpha= \\
=x(t) \otimes y(t)
\end{gathered}
$$

- Associative property:

$$
[x(t) \otimes y(t)] \otimes z(t)=x(t) \otimes[y(t) \otimes z(t)]
$$

- Distributive property:

$$
x(t) \otimes[y(t)+z(t)]=[x(t) \otimes y(t)]+[x(t) \otimes z(t)]
$$

- Differentiation:

$$
\frac{d}{d t}[x(t) \otimes y(t)]=\frac{d x(t)}{d t} \otimes y(t)=\frac{d y(t)}{d t} \otimes x(t)
$$

- Area:

$$
\int_{-\infty}^{\infty} x(t) \otimes y(t) d t=\int_{-\infty}^{\infty} x(t) d t \int_{-\infty}^{\infty} y(t) d t
$$

- Graphic example of convolution

- The convolution of a signal with a Dirac delta results in the same signal

$$
x(t) * \delta(t)=\int_{-\infty}^{+\infty} x(\tau) \delta(t-\tau) d \tau=x(t)
$$

- If the Dirac delta has an offset in time the resulting convolution will have the same temporal offset

$$
x(t) * \delta\left(t-t_{0}\right)=\int_{-\infty}^{+\infty} x(\tau) \delta\left(t-t_{0}-\tau\right) d \tau=x\left(t-t_{0}\right)
$$

- The discrete convolution between two sequences $x[n]$ and $y[n]$ can be described as

$$
z[n]=x[n] \otimes y[n]=\sum_{n=-\infty}^{\infty} x[k] y[n-k]
$$

- The length of the resulting sequence will be always the addition of the length of the convolved sequences minus 1

- Analytical way of proceeding $x[n]=\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 0\end{array} 0\right] ; y[n]=\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right)$

k	-6	-5	-4	-3	-2	-1.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
y[k]							0	0	0	0	0	1	1	1	1	1	0	0							
x[-k]	0	0	1	1	1	0	0																		0
x[1-k]		0	0	1	1	1	0	0																	0
x[2-k]			0	0	1	1	1	0	0																0
$\mathrm{x}[3-\mathrm{k}]$				0	0	1	1	1	0	0															0
$x[4-k]$					0	0	1	1	1	0	0														0
$x[5-k]$						0	0	1	1	1	0	0													0
$x[6-k]$							0	0	1	1	1	0	0												0
x[7-k]								0	0	1	1	1	0	0											1
x[8-k]									0	0	1	1	1	0	0										2
x[9-k]										0	0	1	1	1	0	0									3
x[10-k]											0	0	1	1	1	0	0								3
x[11-k]												0	0	1	1	1	0	0							3
$\mathrm{x}[12-\mathrm{k}]$													0	0	1	1	1	0	0						2
$x[13-k]$														0	0	1	1	1	0	0					1

The Fourier Transform

- Mathematically the Fourier transform of a signal $x(t)$
- $X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t$
- $x(t)$ must verify the Dirichlet condition:
- Have a finite number of maximum, minimum, and discontinuities in a finite interval
- Must be an energy signal
- The reverse Fourier transform has the following expression

$$
x(t)=\mathcal{F}^{-1}\{X(f)\}=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

- Reverse Fourier transform allows to represent the signal in time as the weighted addition of complex exponentials
- Also if $x(t)$ is a real signal, $X(-f)=X^{*}(f)$

$$
X(-f)=\int_{-\infty}^{\infty} x(t) e^{j 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t\right)^{*}=X^{*}(f)
$$

- Fourier transform of a rectangular pulse

$$
X(f)=\int_{-T_{0} / 2}^{T_{0} / 2} e^{-j 2 \pi f t} d t=\frac{T_{0} \sin \left(\pi f T_{0}\right)}{\pi f T_{0}}=T_{0} \operatorname{sinc}\left(f T_{0}\right)
$$

- Energy signals have their energy continuously distributed along the spectrum and not allocated in discrete frequencies
- The Fourier transform is linear, $X(f)=\mathcal{F}\{x(t)\}$ and $Y(f)=$ $\mathcal{F}\{y(t)\}: \mathcal{F}\{a x(t)+b y(t)\}=a X(f)+b Y(f)$

$$
\begin{aligned}
& \mathcal{F}\{a x(t)+b y(t)\}=\int_{-\infty}^{\infty}[a x(t)+b y(t)] e^{-j 2 \pi f t} d t \\
& =a \int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t+b \int_{-\infty}^{\infty} y(t) e^{-j 2 \pi f t} d t=a X(f)+b Y(f)
\end{aligned}
$$

- Duality property

$$
\begin{gathered}
y(f)=\mathcal{F}\{x(t)\}=X(f) \Leftrightarrow x(-f)=\mathcal{F}\{y(t)\}=Y(f) \\
\mathcal{F}\{y(t)\}=\int_{-\infty}^{\infty} \mathcal{F}\{x(\tau)\} e^{-j 2 \pi f t} d t \\
=\int_{-\infty}^{\infty} X(t) e^{-j 2 \pi f t} d t \stackrel{F}{=-f} \int_{-\infty}^{\infty} X(t) e^{j 2 \pi F t} d t=x(F)=x(-f)
\end{gathered}
$$

- Time and frequency delay

$$
\begin{aligned}
& x\left(t-t_{0}\right) \Leftrightarrow X(f) e^{j 2 \pi f t_{0}} \\
& x(t) e^{j 2 \pi t f_{0}} \Leftrightarrow X\left(f-f_{0}\right)
\end{aligned}
$$

- Convolution and product properties

$$
\begin{aligned}
& x(t) \otimes y(t) \Leftrightarrow X(f) Y(f) \\
& x(t) y(t) \Leftrightarrow X(f) \otimes Y(f)
\end{aligned}
$$

$\mathcal{F}\{x(t) \otimes y(t)\}=\int_{-\infty}^{\infty} x(t) \otimes y(t) e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) y(t-\tau) d \tau e^{-j 2 \pi f t} d t$
$=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) y(t-\tau) e^{-j 2 \pi f t} d \tau d t \stackrel{\lambda=t-\tau}{\longrightarrow}$

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau) y(\lambda) e^{-j 2 \pi f(\lambda+\tau)} d \tau d \lambda= \\
\int_{-\infty}^{\infty} x(\tau) e^{-j 2 \pi f \tau} d \tau \int_{-\infty}^{\infty} y(\lambda) e^{-j 2 \pi f \lambda} d \lambda=X(f) Y(f)
\end{gathered}
$$

- Transform of the derivative of a function:

$$
\frac{d x(t)}{d t}=\frac{d \mathcal{F}^{-1}\{X(f)\}}{d t}=\frac{d}{d t} \int_{-\infty}^{\frac{d x(t)}{d t}} \Leftrightarrow j 2 \pi f(f) e^{j 2 \pi f t} d f=\int_{-\infty}^{\infty} j 2 \pi f X(f) e^{j 2 \pi f t} d f
$$

: Transform of the conjugate of a function:

$$
x^{*}(t) \Leftrightarrow X^{*}(-f)
$$

$$
\begin{aligned}
& \mathcal{F}\left\{x^{*}(t)\right\}=\int_{-\infty}^{\infty} x^{*}(t) e^{-j 2 \pi f t} d t=\left(\left(\int_{-\infty}^{\infty} x^{*}(t) e^{-j 2 \pi f t} d t\right)^{*}\right)^{*} \\
& =\left(\int_{-\infty}^{\infty} x(t) e^{j 2 \pi f t} d t\right)^{*} \stackrel{F=-f}{=}\left(\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi F t} d t\right)^{*}=X^{*}(F)=X^{*}(-f)
\end{aligned}
$$

- Time scaling:

$$
x(a t) \Leftrightarrow \frac{1}{|a|} X\left(\frac{f}{a}\right)
$$

$\mathcal{F}\{x(a t)\}=\int_{-\infty}^{\infty} x(a t) e^{-j 2 \pi f t} d t \stackrel{a t=\tau}{\Longrightarrow}=\frac{1}{a} \int_{-\infty}^{\infty} x(\tau) e^{-j 2 \pi \frac{f}{a} \tau} d \tau=\frac{1}{a} X\left(\frac{f}{a}\right)$

- This is only valid if $a>0$, If a is a negative number also the limits change introducing an extra minus symbol and that's why the final result is divided by $|a|$
- We have already stated that periodical functions are very important in communications, but they don't meet the Dirichlet conditions, they are power signals
- We use for them the Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j \frac{2 \pi}{T_{0}} k t}
$$

- Existing a univocal relation between. $x(t)$ and c_{k}

$$
c_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j \frac{2 \pi}{T_{0}} k t} d t
$$

- Example : $x(t)=\sin \left(w_{0} t\right)=\sin \left(\frac{2 \pi}{T_{0}} t\right)$

$$
\begin{array}{r}
\sin \left(\frac{2 \pi}{T_{0}} t\right)=-\frac{j}{2}\left[e^{j \frac{2 \pi}{T_{0}} t}-e^{-j \frac{2 \pi}{T_{0}} t}\right] \\
c_{k}=\left\{\begin{array}{lc}
-\frac{j}{2}, & k=1 \\
\frac{j}{2}, & k=-1 \\
0, & \forall k \neq \pm 1
\end{array}\right.
\end{array}
$$

- Here we applied the definition of $x(t)$ being the addition of weighted complex exponentials and a trigonometry equality
- Example: periodic square signal

$$
x(t)=\left\{\begin{array}{l}
1,-\frac{T_{0}}{2} \leq t<0 \\
-1,0 \leq t<\frac{T_{0}}{2}
\end{array} \quad c_{k}=\left\{\begin{array}{c}
\frac{2}{j \pi k}, k= \pm 1, \pm 3, \pm 5, \ldots \\
0, k=0, \pm 2, \pm 4, \ldots
\end{array}\right.\right.
$$

- Every periodic signal can be represented in frequency as its different c_{k} amplitudes at their corresponding frequency
- If $x(t)$ is real $c_{k}^{*}=c_{-k}$

$$
c_{k}^{*}=\left(\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j \frac{2 \pi}{T_{0}} k t} d t\right)^{*}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{j \frac{2 \pi}{T_{0}} k t} d t=c_{-k}
$$

- If we gather the positive and negative values of k

$$
\begin{aligned}
& c_{k} e^{j \frac{2 \pi}{T_{0}} k t}+c_{-k} e^{-j \frac{2 \pi}{T_{0}} k t}=c_{k} e^{j \frac{2 \pi}{T_{0}} k t}+c_{k}^{*}\left(e^{j \frac{2 \pi}{T_{0}} k t}\right)^{*} \\
& =2 \Re e\left(c_{k} e^{j \frac{2 \pi}{T_{0}} k t}\right)=2\left|c_{k}\right| \cos \left(\frac{2 \pi}{T_{0}} k t+\alpha_{k}\right)
\end{aligned}
$$

- Where $\left|c_{k}\right|$ and α_{k} represent the module and phase of c_{k}
- The expression for $x(t)$ can be rewritten as

$$
\begin{aligned}
& x(t)=\sum_{k=\sigma_{\infty}^{\infty}}^{\infty} c_{k} e^{j \frac{2 \pi}{T_{0}} k t}=c_{0}+\sum_{k=1}^{\infty} c_{k} e^{j \frac{2 \pi}{T_{0}} k t}+c_{-k} e^{-j \frac{2 \pi}{T_{0}} k t}=c_{0}+2 \sum_{k=1}^{\infty}\left|c_{k}\right| \cos \left(\frac{2 \pi}{T_{0}} k t+\alpha_{k}\right) \\
& =c_{0}+2 \sum_{k=1} a_{k} \cos \left(\frac{2 \pi}{T_{0}} k t\right)+b_{k} \sin \left(\frac{2 \pi}{T_{0}} k t\right)
\end{aligned}
$$

- Where

$$
a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \cos \left(\frac{2 \pi}{T_{0}} k t\right) d t b_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \sin \left(\frac{2 \pi}{T_{0}} k t\right) d t
$$

- c_{0} represents the average value of $x(t), f_{1}=1 / T_{0}$ represents the fundamental frequency of the signal and the rest of them the different harmonics
- As an example, different number of harmonics of a square pulse

- For energy signals the energy can be calculated as:

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

- For power signals:

$$
P=\frac{1}{T_{0}} \int_{0}^{T_{0}}|x(t)|^{2} d t=\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}
$$

- In digital systems we apply what is called DFT: Discrete Fourier Transform
- Do not confuse with DTFT (Discrete Time Fourier Transform) that is discrete in time ($x[n]$), but continuous in frequency

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

- Where N is the number of samples of the signal used
- The inverse Fourier transform has the following expression

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}
$$

- The DFT spectrum is periodic with period N
- The maximum frequency that can be represented is the sampling frequency, inverse of the sampling time, $F_{s}=1 / T_{s}$
- The frequency resolution will be F_{s} / N
- Example: $x[n]=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$

- This technique is known as zero padding and changes the resolution in the frequency axis but not the frequency resolution of the spectral components that are dependent only of the M non zero samples
- If we further increase the zero padding to 100 samples

Sampling and quantization

- In nature as we perceive it, physical magnitudes that can be measured are
- Continuous in time
- Continuous in amplitude
- We live in the analogue "world"
- But to work with computers, microprocessors, etc. we cannot have a infinite accuracy, we work with bits (representing float, integer, ...)
- A variable is digital when only can take certain values of a finite group, $x_{D} \in X_{D}\left[x_{0}, x_{1}, x_{2}, \ldots\right]$

THANKS!

Any questions?
Darío Alfonso Pérez-Calderón Rodríguez dperez@gas-granat.ru

- As an example, a natural binary variable of 8 bits $x_{D} \in$ $X_{D}[0,1,2, \ldots, 255]$
- The possible values can be ordered following a sequence so each value is represented by the place it occupies, $x_{D}=x_{D}[n]$
- If the n index represents an ordered temporal occurrence, then x_{D} is a digital signal
- It is possible to represent a signal $x(t)$ by means of a sequence of numbers $x_{D}=x_{D}[n]$
- The resulting digital signal
- Is discrete and each index n represents a time instant
- Is discrete, takes values from a finite set
- Can be digitally stored
- In order to digitalize a signal two operations must be performed: sampling and quantization
- A digital signal $x_{D}=x_{D}[n]$, under certain conditions can be transformed again into the original $x(t)$
- To get the digital version, $x_{D}, A D C$ are used
- To transform a digital signal into analogue, DAC are used
- Sampling a signal is to register its value every certain period of time
- Usually the time between samples, sampling time $\left(T_{S}\right)$, is constant and defines also the sampling frequency $\left(f_{s}=1 / T_{s}\right)$

- As said previously the digital signals have a finite number of possible values, $x_{D} \in X_{D}$, usually the sampled values will not correspond with one of these possible values
- It will be necessary to assign one of them to the sample following some strategy
- In general it can be said that $x_{D}=Q\left(x\left(n T_{S}\right)\right)=Q\left(x_{S}[n]\right)$, and $Q(\cdot)$ can take different forms
- Round
- Truncate
-...
- Linear quantifiers have a stair shaped output form like the following
- Δ represents the quantization step
- In the example 3 bits quantization is used
- The example uses the following quantization rule:

$$
Q(x)=\Delta\left(\left\lfloor\frac{x}{\Delta}\right\rfloor+\frac{1}{2}\right)
$$

- o cannot be represented

- By quantifying the signal we are introducing an error
- The error we introduce is the difference between output and input, $e=$ $y-x=Q(x)-x$
- Inside the quantization interval the error is bounded in the interval $[-\Delta / 2, \Delta / 2]$
- In general $\Delta=\frac{x_{\max }-x_{\min }}{2^{m}}$, where m represents the number of bits used in the quantization

