Лабораторная работа №5 по дисциплине «Системы поддержки принятия решений» «Исследование архитектур сверточных нейронных сетей на латасетах MNIST и CIFAR»

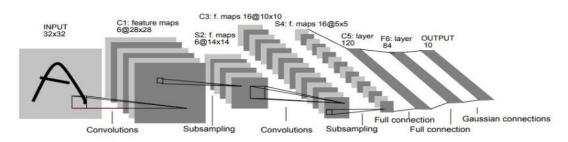
Цель работы – исследование различных архитектур сверточных нейронных сетей на примере задачи классификации изображений.

Классификация — понятие в науке, обозначающее разновидность деления объёма понятия по определённому основанию (признаку, критерию), при котором объём родового понятия (класс, множество) делится на виды (подклассы, подмножества), а виды, в свою очередь делятся на подвиды и т.д.

Общие положения

Текст программы представлен ниже.

Общая структура сверточной нейронной сети LeNet представлена на рисунке.



Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	32x32	-	4	-
1	Convolution	6	28x28	5x5	1	tanh
2	Average Pooling	6	14x14	2x2	2	tanh
3	Convolution	16	10x10	5x5	1	tanh
4	Average Pooling	16	5x5	2x2	2	tanh
5	Convolution	120	1x1	5x5	1	tanh
6	FC	=	84	:#X		tanh
Output	FC	#	10	-	-	softmax

В лабораторной работе №4 мы классифицировали датасет MNIST (рукописные цифры) с помощью сверточной нейронной сети. Исследуем результаты классификации, использовав различные архитектуры сверточной нейронной сети на базе LeNet.

Изменим LeNet, чтобы повысить качество на валидации. Сейчас уже никто не использует активации **тангенсами**, потому что они приводят к затуханию градиента. Нельзя построить действительно глубокую сеть так, чтобы ошибки, посчитанные в конце сети хорошо возвращались к началу сети. Тангенсы или сигмоиды приводят к тому, что сигнал очень быстро затухает.

Во-вторых, сейчас мало кто использует свёртки 5×5 . Свёртки 5×5 заменяют на подряд идущие две свёртки 3×3 . В свертке $5 \times 5 - 25$ весов, а в двух свёртках $3 \times 3 - 18$ весов. Весов меньше – меньше переобучения.

В-третьих, сейчас вместо average используется везде max pooling.

И последний момент — это **батч-нормализация**, которая призвана ускорять обучение. Рассмотрим переменные, которые конфигурируют класс LeNet5 и функцию forward: **activation**, **pooling**, **conv_size** и **use_batch_norm**. Они определяют вид активации (тангенсом или ReLU), вид pooling (average" или "max pooling). Если "conv_size = 5", то идет одна свёртка 5 на 5, либо "3" (две последовательных 3 на 3). Переменная **use_batch_norm** определяет, будет использована батч-нормализация или нет.

Теперь функция forward выглядит следующим образом. Если "conv_size = 5", то используем одну конволюцию 5 на 5, если "conv_size=3", то будем использовать сначала одну конволюцию 3 на 3, и результат её передадим в следующую конволюцию 3 на 3. Далее идет активация (ReLU или тангенс).

Если используем батч-нормализацию, то дополнительно после свёртки вставим слой батч-нормализации **batchnorm1** или **batchnorm2**.

Отметим, что слои батч-нормализации вызываются с помощью **torch.nn.BatchNorm2d**, потому что мы имеем дело с картинками. Если нормализовать некоторый вектор после, например, fully-connected слоя, то следует использовать **torch.nn.BatchNorm1d**. На вход нужно передать **num_features**, то есть то количество каналов, которое имеет картинка или тензор перед батч-нормализацией.

Важный момент, который нужно добавить в процесс обучения, связанный тоже с батч-нормализацией — это некоторый флажок: либо сеть находится в состоянии тренировки (флаг "net.train"), либо сеть находится в состоянии "evaluation", (флаг "net.eval").

Дело в том, что батч-нормализация происходит не в момент вычисления градиентов (не в момент backward), а в момент forward. Каждый раз, когда сеть проходит в forward-направлении, параметры математического ожидания и стандартного отклонения в batch-norm слое заново обучаются/подгоняются. Для того, чтобы этого не происходило во время тестирования, нужно явно указать batch-norm слою, что сеть не обучается, а мы её тестируем, чтобы он не изменял эти параметры математического ожидания и стандартного отклонения.

Были такие случаи, когда готовую, работающую сеть на PyTorch, отдавали заказчику, и через какое-то время она переставала работать, потому что параметры внутри batchnorm-слоя изменялись, а сеть не была проставлена в evaluation-режим.

Для уменьшения потребления памяти GPU используется конструкция (отменяет хранение истории градиентов):

```
with torch.no_grad():
    test preds = net.forward(X test)
```

Анализ результатов показывает, что для исследования стоит взять более сложный датасет, где качество будет похуже, но можно увидеть влияние различие добавок на точность классификации и ошибку. Дело в том, что даже классические методы на этом датасете показывают довольно хорошие результаты (в районе 98-99%).

Возьмем действительно сложный датасет, с которым классические методы не справляются. Есть такой датасет — CIFAR-10, он состоит из 32×32 RGB-картинок, разбитых на 10 классов, всего картинок 60 тысяч — 50 тысяч для обучения и 10 тысяч для валидации.

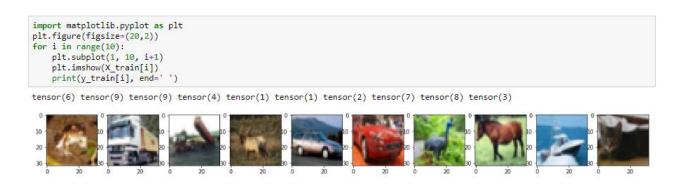
Также существует его увеличенная версия – CIFAR-100 на 100 классов.

Обучим на нём наши сети из предыдущего шага. Код практически не изменится, но необходимо немного изменить загрузку датасета, потому что теперь есть три канала в изображении. Во-вторых, изменится сеть, так как раньше приходили изображения 28×28 , а теперь 32×32 .

Загрузим этот датасет с помощью библиотеки **torchvision**. Сформируем **CIFAR_train** и **CIFAR_test**. Нужно преобразовать эти датасеты в FloatTensor для картинок и в LongTensor для классов. Видим, что разбивка совпадает с заявленной: 50 000 идёт в train, 10 000 идёт в test.

Если мы посмотрим на максимальное и минимальное значения в картинках, то окажется, что минимальное значение равно 0, а максимальное равно 255. С такими изображениями можно работать, но для удобства отнормируем эти данные — разделим значение каждого пикселя на 255.

Можно визуализировать классы. Например, метка 9 отвечает за "truck", то есть за грузовики.



Ещё одна особенность этого датасета состоит в том, что, как и у обычных картинок, канал "цвет" кодируется в последней размерности. Сначала идёт высота картинки, ширина, а после этого — цвет. Но руtorch требует, чтобы этот канал шёл на первом месте. Нужно реорганизовать размерность тензора таким образом, чтобы цвет шёл на втором месте — после количества картинок в датасете. Это делается с помощью метода "**permute**".

Теперь у датасета будет shape $50000 \times 3 \times 32 \times 32$, то есть каналы будут идти перед размерностью изображения.

Далее изменим сеть LeNet таким образом, чтобы она принимала изображения 32×32 и три канала на входе, в **in_chanels** первой конволюции поставим "3" (раньше было "1"). Размерность 32×32 получается за счет паддинга. Больше ничего не меняется — процесс обучения не изменяется, он остался таким же, как и раньше.

Теперь явно есть отличия в результатах. LeNet. Начальный — с тангенсами, без свёрток 3×3 , без max pooling и без батч-нормализации получает самые плохие показатели качества. Он обучается примерно на 55% ассигасу, то есть он угадывает в 55% процентах случаев. Так как классов 10, это не самое плохое качество. Если бы он угадывал случайно, какое было бы качество?

Мы видим интересную особенность батч-нормализации — <u>сеть с батч-нормализацией учится очень быстро</u>. Уже на пятой эпохе сеть достигает качества, которое без батч-нормализации достигается на 20-й эпохе. Получается ускорение в четыре раза. Однако батч-нормализация и переобучается быстрее. <u>Логично предположить, что если весь процесс обучения ускоряется, то и момент переобучения наступает быстрее</u>.

Более явно это можно увидеть на графиках лосс-функции, в которых очевидно, что переобучение при батч-нормализации наступает уже на пятой эпохе и качество начинает ухудшаться. Почему качество ухудшается так сильно (на графиках сеть всё ещё лучше предсказывает, чем, например, стандартный LeNet с тангенсом)? Дело в том, что переобученные сетки очень уверены в своих ответах. Если не переобученная сеть предсказывает *неправильно* с вероятностью 0.6, то переобученная сеть будет предсказывать *неправильно* с вероятностью 1, и, соответственно, её кросс-энтропия будет огромной.

На этом графике можно увидеть ещё одну контринтуитивную вещь (какую?).

Можно сделать вывод, что все рекомендации являются некоторыми эмпирическими фактами, которые могут не воспроизводиться на конкретной задаче.

Исследование на датасете MNIST

```
import torch
import random
import numpy as np
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual seed(0)
torch.backends.cudnn.deterministic = True
##
import torchvision.datasets
##
MNIST train = torchvision.datasets.MNIST('./', download=True, train=True)
MNIST test = torchvision.datasets.MNIST('./', download=True, train=False)
##
X_train = MNIST_train.train_data
y train = MNIST train.train labels
X test = MNIST test.test data
y test = MNIST test.test labels
##
len(y_train), len(y_test)
##
X_train = X_train.float()
X test = X_test.float()
##
import matplotlib.pyplot as plt
plt.imshow(X_train[0, :, :])
plt.show()
print(y train[0])
##
X_train = X_train.unsqueeze(1).float()
X test = X test.unsqueeze(1).float()
##
X train.shape
##
```

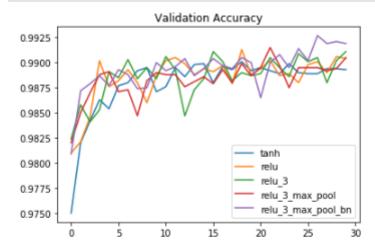
```
class LeNet5 (torch.nn.Module):
    def __init__(self,
                 activation='tanh',
                 pooling='avg',
                 conv size=5,
                 use batch norm=False):
        super(LeNet5, self). init ()
        self.conv size = conv size
        self.use batch norm = use batch norm
        if activation == 'tanh':
            activation function = torch.nn.Tanh()
        elif activation == 'relu':
            activation function = torch.nn.ReLU()
        else:
            raise NotImplementedError
        if pooling == 'avg':
            pooling layer = torch.nn.AvgPool2d(kernel size=2, stride=2)
        elif pooling == 'max':
           pooling layer = torch.nn.MaxPool2d(kernel size=2, stride=2)
            raise NotImplementedError
        if conv size == 5:
            self.conv1 = torch.nn.Conv2d(
                in channels=1, out channels=6, kernel size=5, padding=2)
        elif conv size == 3:
            self.conv1 1 = torch.nn.Conv2d(
                in channels=1, out channels=6, kernel size=3, padding=1)
            self.conv1 2 = torch.nn.Conv2d(
                in channels=6, out channels=6, kernel size=3, padding=1)
        else:
            raise NotImplementedError
        self.act1 = activation function
        self.bn1 = torch.nn.BatchNorm2d(num features=6)
        self.pool1 = pooling layer
        if conv size == 5:
            self.conv2 = self.conv2 = torch.nn.Conv2d(
                in channels=6, out channels=16, kernel size=5, padding=0)
        elif conv size == 3:
            self.conv2 1 = torch.nn.Conv2d(
                in channels=6, out channels=16, kernel size=3, padding=0)
            self.conv2 2 = torch.nn.Conv2d(
                in channels=16, out channels=16, kernel size=3, padding=0)
            raise NotImplementedError
        self.act2 = activation function
        self.bn2 = torch.nn.BatchNorm2d(num features=16)
        self.pool2 = pooling layer
        self.fc1 = torch.nn.Linear(5 * 5 * 16, 120)
        self.act3 = activation_function
```

```
self.act4 = activation function
        self.fc3 = torch.nn.Linear(84, 10)
   def forward(self, x):
        if self.conv size == 5:
           x = self.conv1(x)
        elif self.conv size == 3:
           x = self.conv1 2(self.conv1 1(x))
        x = self.act1(x)
        if self.use batch norm:
           x = self.bn1(x)
        x = self.pool1(x)
        if self.conv size == 5:
           x = self.conv2(x)
        elif self.conv size == 3:
           x = self.conv2 2(self.conv2 1(x))
        x = self.act2(x)
        if self.use batch norm:
           x = self.bn2(x)
        x = self.pool2(x)
       x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
       x = self.fcl(x)
       x = self.act3(x)
       x = self.fc2(x)
       x = self.act4(x)
       x = self.fc3(x)
       return x
##
def train(net, X train, y train, X test, y test):
   device = torch.device('cuda:0' if torch.cuda.is available() else 'cpu')
   net = net.to(device)
   loss = torch.nn.CrossEntropyLoss()
   optimizer = torch.optim.Adam(net.parameters(), lr=1.0e-3)
   batch size = 100
    test accuracy history = []
   test loss history = []
   X test = X test.to(device)
   y_test = y_test.to(device)
   for epoch in range(30):
        order = np.random.permutation(len(X train))
        for start_index in range(0, len(X_train), batch_size):
            optimizer.zero grad()
            net.train()
            batch indexes = order[start index:start index+batch size]
            X batch = X train[batch indexes].to(device)
            y batch = y train[batch indexes].to(device)
            preds = net.forward(X batch)
```

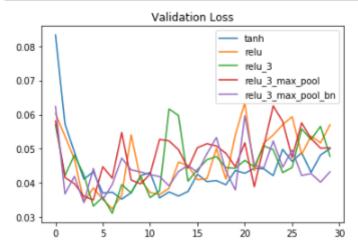
self.fc2 = torch.nn.Linear(120, 84)

```
loss value = loss(preds, y batch)
            loss value.backward()
            optimizer.step()
        net.eval()
        with torch.no_grad():
             test_preds = net.forward(X_test)
             test loss history.append(loss(test preds, y test).data.cpu())
        accuracy = (test preds.argmax(dim=1) == y test).float().mean().data
.cpu()
        test accuracy history.append(accuracy)
        print(accuracy)
    print('----')
    return test accuracy history, test loss history
accuracies = {}
losses = {}
accuracies['tanh'], losses['tanh'] = \
    train(LeNet5(activation='tanh', conv size=5),
          X train, y train, X test, y test)
accuracies['relu'], losses['relu'] = \
    train(LeNet5(activation='relu', conv size=5),
          X train, y train, X test, y test)
accuracies['relu_3'], losses['relu 3'] = \
    train(LeNet5(activation='relu', conv size=3),
          X train, y train, X test, y test)
accuracies['relu 3 max pool'], losses['relu 3 max pool'] = \
    train(LeNet5(activation='relu', conv size=3, pooling='max'),
          X train, y train, X test, y test)
accuracies['relu 3 max pool bn'], losses['relu 3 max pool bn'] = \
    train(LeNet5(activation='relu', conv size=3, pooling='max', use batch n
orm=True),
    X train, y train, X test, y test)
##
for experiment id in accuracies.keys():
    plt.plot(accuracies[experiment id], label=experiment id)
plt.title('Validation Accuracy');
##
for experiment id in losses.keys():
    plt.plot(losses[experiment id], label=experiment id)
plt.legend()
plt.title('Validation Loss');
##
```

```
for experiment_id in accuracies.keys():
    plt.plot(accuracies[experiment_id], label=experiment_id)
plt.legend()
plt.title('Validation Accuracy');
```



```
for experiment_id in losses.keys():
    plt.plot(losses[experiment_id], label=experiment_id)
plt.legend()
plt.title('Validation Loss');
```



Исследование на датасете CIFAR

```
import torch
import random
import numpy as np
random.seed(0)
np.random.seed(0)
torch.manual seed(0)
torch.cuda.manual seed(0)
torch.backends.cudnn.deterministic = True
##
import torchvision.datasets
CIFAR train = torchvision.datasets.CIFAR10('./', download=True, train=True)
CIFAR_test = torchvision.datasets.CIFAR10('./', download=True, train=False)
##
X train = torch.FloatTensor(CIFAR train.data) y train =
torch.LongTensor(CIFAR_train.targets)
                                                      X test
torch.FloatTensor(CIFAR test.data)
                                                     y test
torch.LongTensor(CIFAR test.targets)
##
len(y_train), len(y_test)
X_train.min(), X_train.max()
X train /= 255.
X test /= 255.
CIFAR train.classes
##
import matplotlib.pyplot as plt
plt.figure(figsize=(20,2))
for i in range(10):
plt.subplot(1, 10, i+1)
plt.imshow(X train[i])
print(y_train[i], end=' ')
##
X train.shape, y train.shape
##
X \text{ train} = X \text{ train.permute}(0, 3, 1, 2)
X \text{ test} = X \text{ test.permute}(0, 3, 1, 2)
##
X train.shape
```

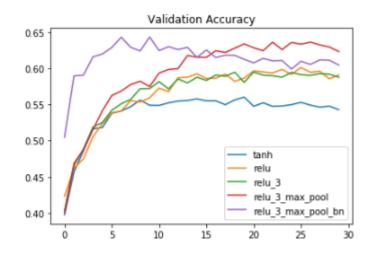
```
class LeNet5(torch.nn.Module):
   def init (self,
                 activation='tanh',
                pooling='avg',
                 conv_size=5,
                 use batch norm=False):
       super(LeNet5, self). init ()
       self.conv_size = conv_size
       self.use batch norm = use batch norm
       if activation == 'tanh':
           activation function = torch.nn.Tanh()
       elif activation == 'relu':
           activation function = torch.nn.ReLU()
           raise NotImplementedError
       if pooling == 'avg':
           pooling layer = torch.nn.AvgPool2d(kernel size=2, stride=2)
       elif pooling == 'max':
           pooling layer = torch.nn.MaxPool2d(kernel size=2, stride=2)
       else:
           raise NotImplementedError
       if conv size == 5:
            self.conv1 = torch.nn.Conv2d(
                in channels=3, out channels=6, kernel size=5, padding=0)
       elif conv size == 3:
            self.conv1 1 = torch.nn.Conv2d(
                in channels=3, out channels=6, kernel size=3, padding=0)
            self.conv1 2 = torch.nn.Conv2d(
                in channels=6, out channels=6, kernel size=3, padding=0)
       else:
            raise NotImplementedError
       self.act1 = activation function
       self.bn1 = torch.nn.BatchNorm2d(num features=6)
       self.pool1 = pooling layer
       if conv size == 5:
            self.conv2 = self.conv2 = torch.nn.Conv2d(
               in channels=6, out channels=16, kernel size=5, padding=0)
       elif conv size == 3:
            self.conv2 1 = torch.nn.Conv2d(
                in channels=6, out channels=16, kernel size=3, padding=0)
            self.conv2 2 = torch.nn.Conv2d(
                in channels=16, out channels=16, kernel size=3, padding=0)
       else:
           raise NotImplementedError
       self.act2 = activation function
       self.bn2 = torch.nn.BatchNorm2d(num features=16)
       self.pool2 = pooling_layer
       self.fc1 = torch.nn.Linear(5 * 5 * 16, 120)
       self.act3 = activation function
       self.fc2 = torch.nn.Linear(120, 84)
       self.act4 = activation function
```

```
self.fc3 = torch.nn.Linear(84, 10)
def forward(self, x):
    if self.conv size == 5:
       x = self.conv1(x)
    elif self.conv size == 3:
       x = self.conv1 2(self.conv1 1(x))
    x = self.act1(x)
    if self.use batch norm:
       x = self.bn1(x)
    x = self.pool1(x)
    if self.conv size == 5:
       x = self.conv2(x)
    elif self.conv size == 3:
       x = self.conv2 2(self.conv2 1(x))
    x = self.act2(x)
    if self.use batch norm:
       x = self.bn2(x)
    x = self.pool2(x)
   x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    x = self.fcl(x)
   x = self.act3(x)
   x = self.fc2(x)
   x = self.act4(x)
   x = self.fc3(x)
  return x
```

##

```
def train(net, X_train, y_train, X_test, y_test):
   device = torch.device('cuda:0' if torch.cuda.is available() else 'cpu')
   net = net.to(device)
   loss = torch.nn.CrossEntropyLoss()
   optimizer = torch.optim.Adam(net.parameters(), lr=1.0e-3)
   batch size = 100
   test accuracy history = []
   test loss history = []
   X test = X test.to(device)
   y test = y test.to(device)
    for epoch in range(30):
        order = np.random.permutation(len(X train))
        for start index in range(0, len(X train), batch size):
            optimizer.zero_grad()
            net.train()
            batch indexes = order[start index:start index+batch size]
            X batch = X train[batch indexes].to(device)
            y_batch = y_train[batch indexes].to(device)
            preds = net.forward(X batch)
            loss value = loss(preds, y batch)
            loss value.backward()
```

```
optimizer.step()
            X batch
        net.eval()
        with torch.no grad():
             test preds = net.forward(X test)
        test loss history.append(loss(test preds, y test).data.cpu())
        accuracy = (test preds.argmax(dim=1) == y test).float().mean().data
.cpu()
        test accuracy history.append(accuracy)
        print(accuracy)
    del net
    return test accuracy history, test loss history
accuracies = {}
losses = {}
accuracies['tanh'], losses['tanh'] = \
    train (LeNet5 (activation='tanh', conv size=5),
          X_train, y_train, X_test, y_test)
accuracies['relu'], losses['relu'] = \
    train(LeNet5(activation='relu', conv size=5),
          X train, y train, X test, y test)
accuracies['relu 3'], losses['relu 3'] = \
    train(LeNet5(activation='relu', conv size=3),
          X_train, y_train, X_test, y_test)
accuracies['relu_3_max_pool'], losses['relu_3_max_pool'] = \
    train(LeNet5(activation='relu', conv size=3, pooling='max'),
          X_train, y_train, X_test, y_test)
accuracies['relu 3 max pool bn'], losses['relu 3 max pool bn'] = \
    train(LeNet5(activation='relu', conv size=3, pooling='max', use batch n
orm=True),
          X train, y train, X test, y test)
```



Задание на лабораторную работу

- 1. Изучить понятия: батч-нормализация, переобучение нейронной сети.
 - <u>Примечание.</u> В машинном обучении довольно известным фактом является то, что нормализованные (или стандартизованные) данные приводят к более быстрому обучению модели.
- 2. Исследовать нейронную сеть LeNet при различных параметрах (5 вариантов) на датасете MNIST. Объяснить результаты экспериментов.
- 3. Исследовать нейронную сеть LeNet при различных параметрах (5 вариантов) на датасете CIFAR. Построить графики **validation loss**. Объяснить результаты экспериментов. Каким образом можно избежать переобучения сети?

Содержание отчета

- 1. Титульный лист
- 2. Цель работы, постановка задачи исследования.
- 3. Описание методики исследования.
- 4. Результаты исследования в соответствии с заданием.
- 5. Выводы по работе.

Полезная ссылка

https://neurohive.io/ru/tutorial/cnn-na-pytorch/