# 10.3. Реализация передаточной функции методом уравнивания коэффициентов. Реализация лестничных LC-фильтров нижних частот

Задача реализации ставит своей целью отыскание схемы электрической цепи и значений её параметров по полученной в результате аппроксимации функции. Подавляющее число методов реализации исторически сформировалось таким образом, что в качестве исходной функции в них используется операторная передаточная функция H(p).

*H*(*p*) получается на этапе аппроксимации и должна удовлетворять условиям физической реализуемости.

В настоящее время существует множество методов реализации по заданной H(p), однако, среди них можно выделить весьма ограниченное число, которые могут рассматриваться не только как наиболее употребительные, но и как фундаментальные. Одним из таких методов является метод уравнивания коэффициентов.

Решение задачи реализации разбивается на два основных этапа. На первом этапе выбирается подходящая цепь, которая потенциально способна реализовать заданную передаточную функцию H(p) с учетом тех дополнительных требований, которые могут быть предъявлены к синтезируемой цепи. При реализации лестничных LC-фильтров нижних частот этими требованиями являются режим включения фильтра и число элементов фильтра, которое равно «*n*»— старшей степени полинома Гурвица заданной H(p).

На втором этапе решения задачи реализации необходимо найти численные значения элементов выбранной цепи, при которых она реализует заданную передаточную функцию. Здесь возможно использование метода уравнивания коэффициентов.

Сущность метода заключается в следующем. Для выбранной цепи, потенциально пригодной для реализации заданной передаточной функции, по схеме цепи находится ее передаточная функция

$$H(p) = \frac{W(p)}{V(p)} = \frac{b_0 p^m + b_1 p^{m-1} + \dots + b_{m-1} p + b_m}{p^n + a_1 p^{n-1} + \dots + a_{n-1} p + a_n},$$
(10.17)

коэффициенты которой  $a_k$  и  $b_k$  выражаются через значения параметров элементов цепи. После этого найденные коэффициенты, выраженные через параметры элементов цепи, приравниваются к численным значениям соответствующих коэффициентов заданной функции, подлежащей реализации. В результате образуется система уравнений (компонентных уравнений), решение которых позволяет, если схема цепи выбрана правильно, найти значения элементов синтезируемой цепи. В качестве цепей, потенциально реализующих заданную передаточную функцию H(p), часто используют лестничные реактивные четырехполюсники. Лестничными называются четырехполюсники, составленные из чередующихся продольных и поперечных ветвей.

Рассмотрим лестничную цепь общего вида (рис. 10.13). На схеме все указанные величины являются функциями комплексного переменного p: I(p), U(p), Z(p), Y(p).



Рис. 10.13. Схема лестничной цепи общего вида

Составим систему уравнений по первому и второму законам Кирхгофа для лестничной цепи:

$$\begin{cases} -U_1 + Z_1 \cdot I_1 + U_2 = 0; \\ -I_1 + U_2 \cdot Y_2 + I_3 = 0; \\ -U_2 + Z_3 \cdot I_3 + U_4 = 0; \\ \dots \\ -I_{n-1} + U_n \cdot Y_n = 0. \end{cases}$$

В матричном виде данная система уравнений будет иметь вид:

| $Z_1$ | 1     | 0     | 0     | ••• | 0     |   | $ I_1 $ |   | $U_1$ |   |
|-------|-------|-------|-------|-----|-------|---|---------|---|-------|---|
| -1    | $Y_2$ | 1     | 0     | ••• | 0     |   | $U_2$   |   | 0     |   |
| 0     | -1    | $Z_3$ | 1     | ••• | 0     |   | $I_3$   | _ | 0     |   |
| 0     | 0     | -1    | $Y_4$ | ••• | 0     | - | $U_3$   | _ | 0     | • |
| :     | :     | :     | :     | :   | ÷     |   | :       |   | 0     |   |
| 0     | 0     | 0     | 0     | -1  | $Y_n$ |   | $ U_n $ |   | 0     |   |

Если выразить выходное напряжение  $U_n(p)$  через входное  $U_1(p)$  по методу Крамера, то получится следующее выражение:

$$U_n(p) = \frac{\Delta_n}{\Delta},\tag{10.18}$$

где

$$\Delta_n = \begin{vmatrix} Z_1 & 1 & 0 & 0 & \cdots & U_1 \\ -1 & Y_2 & 1 & 0 & \cdots & 0 \\ 0 & -1 & Z_3 & 1 & \cdots & 0 \\ 0 & 0 & -1 & Y_4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & -1 & 0 \end{vmatrix} = U_1,$$

а  $\Delta$  – континуант цепи. Это определитель матрицы:

$$\Delta = \begin{vmatrix} Z_1 & 1 & 0 & 0 & \cdots & 0 \\ -1 & Y_2 & 1 & 0 & \cdots & 0 \\ 0 & -1 & Z_3 & 1 & \cdots & 0 \\ 0 & 0 & -1 & Y_4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & -1 & Y_n \end{vmatrix}.$$
 (10.19)

Таким образом, операторная передаточная функция *H*(*p*) может быть найдена из (10.18):

$$H(p) = \frac{U_n(p)}{U_1(p)} = \frac{1}{\Delta}.$$
 (10.20)

Согласно (10.20) операторная передаточная функция лестничной цепи – это функция, обратная континуанту цепи.

Контитуант цепи может быть вычислен с помощью простейших соотношений. Покажем это на примере:

$$\Delta_{1} = |Z_{1}| = Z_{1};$$

$$\Delta_{2} = \begin{vmatrix} Z_{1} & 1 \\ -1 & Y_{2} \end{vmatrix} = Z_{1}Y_{2} + 1;$$

$$\Delta_{3} = \begin{vmatrix} Z_{1} & 1 & 0 \\ -1 & Y_{2} & 1 \\ 0 & -1 & Z_{3} \end{vmatrix} = (-1)^{3+3} \cdot Z_{3} \cdot \begin{vmatrix} Z_{1} & 1 \\ -1 & Y_{2} \end{vmatrix} + (-1)^{2+3} \cdot (-1) \cdot \begin{vmatrix} Z_{1} & 0 \\ -1 & 1 \end{vmatrix} = Z_{3} \cdot \Delta_{2} + Z_{1} = Z_{3} \cdot \Delta_{2} + \Delta_{1}.$$

Применим метод математической индукции и запишем рекуррентное соотношение для вычисления континуанта цепи:

$$\Delta_{k+1} = A_{k+1} \cdot \Delta_k + \Delta_{k-1}, \qquad (10.21)$$

где  $A_{k+1} - "k + 1"$  элемент на главной диагонали матрицы (10.19), либо  $Z_{k+1}$ , либо  $Y_{k+1}$ .

Рассмотрим пример расчета *H*(*p*) лестничного реактивного четырехполюсника через континуант.



Рис. 10.14. Схема LC-цепи лестничной структуры

Пусть задана LC-цепь лестничной структуры, в продольных ветвях которой включены индуктивности, а в поперечных – емкости (рис. 10.14).

С учетом приведенной классификации электрических LC-фильтров ставится задача нахождения *H*(*p*) фильтра нижних частот 3-го порядка в режиме заданного входного напряжения.

Континуант для данной схемы имеет вид:

$$\Delta(p) = \begin{vmatrix} Z_1 & 1 & 0 & 0 \\ -1 & Y_2 & 1 & 0 \\ 0 & -1 & Z_3 & 1 \\ 0 & 0 & -1 & Y_4 \end{vmatrix} = \begin{vmatrix} pL_1 & 1 & 0 & 0 \\ -1 & pC_2 & 1 & 0 \\ 0 & -1 & pL_3 & 1 \\ 0 & 0 & -1 & 1/R_4 \end{vmatrix};$$

$$\begin{split} & \Delta_1 = Z_1 = pL_1; \\ & \Delta_2 = Z_1 Y_2 + 1 = pL_1 pC_2 + 1; \\ & \Delta_3 = Z_3 \cdot \Delta_2 + Z_1 = pL_3 \cdot (p^2 L_1 C_2 + 1) + pL_1 = p^3 L_1 C_2 L_3 + p(L_1 + L_3); \\ & \Delta_4 = Y_4 \cdot \Delta_3 + \Delta_2 = \frac{1}{R_4} \cdot (p^3 L_1 C_2 L_3 + p(L_1 + L_3)) + pL_1 pC_2 + 1 \\ & = p^3 L_1 C_2 L_3 \frac{1}{R_4} + p^2 L_1 C_2 + p(L_1 + L_3) \frac{1}{R_4} + 1. \end{split}$$

Зная континуант цепи, можно записать выражение для операторной передаточной функции данной лестничной цепи:

$$H(p) = \frac{U_2(p)}{U_1(p)} = \frac{1}{\Delta_4} = \frac{1}{p^3 L_1 C_2 L_3 \frac{1}{R_4} + p^2 L_1 C_2 + p(L_1 + L_3) \frac{1}{R_4} + 1} = \frac{\frac{R_4}{L_1 C_2 L_3}}{p^3 + p^2 \frac{R_4}{L_3} + p \frac{(L_1 + L_3)}{L_1 C_2 L_3} + \frac{R_4}{L_1 C_2 L_3}}.$$
(10.22)

Пусть необходимо реализовать полиномиальный ФНЧ 3-го порядка в режиме заданного входного напряжения, имеющего операторную передаточную функцию:

$$H(p) = \frac{1}{p^3 + a_1 p^2 + a_2 p + a_3}.$$
 (10.23)

Для того, чтобы найти параметры элементов фильтра, нужно воспользоваться методом уравнивания коэффициентов.

В качестве схемы фильтра, потенциально реализующей заданную передаточную функцию H(p) (10.23), целесообразно взять схему, представленную на рис. 10.14. Она соответствует заданному режиму включения фильтра, и число реактивных элементов в ней n = 3, что соответствует старшей степени полинома знаменателя H(p). В этом случае для решения поставленной задачи реализации можно использовать полученное выражение для операторной передаточной функции (10.22).

Для того, чтобы найти параметры цепи рис. 10.14, приравняем коэффициенты при одинаковых степенях *р* в выражениях (10.22) и (10.23). Запишем получившуюся систему уравнений:

$$\begin{cases} a_1 = \frac{R_4}{L_3}; \\ a_2 = \frac{(L_1 + L_3)}{L_1 C_2 L_3}; \\ a_3 = \frac{R_4}{L_1 C_2 L_3}. \end{cases}$$

В получившейся системе три уравнения и 4 переменных:  $L_1$ ,  $C_2$ ,  $L_3$ ,  $R_4$ . Для того, чтобы система была совместной, т.е. число уравнений было равно числу переменных, можно задать один из элементов цепи, например,  $R_4$ . Решив получившуюся систему уравнений, найдем  $L_1$ ,  $C_2$ ,  $L_3$ , то есть определим параметры элементов цепи и тем самым решим задачу реализации. В результате будет получена лестничная LC-реализация фильтра нижних частот 3-го порядка в режиме заданного входного напряжения (рис. 10.14).

На рис. 10.15, *а* приведен график ослабления ФНЧ-фильтра 3-го порядка с характеристикой Баттерворта, а на рис. 10.15, *б* – ФНЧ-фильтра 3-го порядка с характеристикой Чебышева.



б) с характеристикой Чебышева

Следует обратить внимание, что если коэффициенты  $a_1, a_2, a_3$ полинома Гурвица операторной передаточной функции (10.23) будут коэффициентами полинома Баттерворта, то рассчитанные параметры  $L_1, C_2, L_3, R_4$  обеспечат характеристику ослабления фильтра, показанную на рис. 10.15, а.

Если эти коэффициенты являются коэффициентами полинома Чебышева, то рассчитанные параметры  $L_1, C_2, L_3, R_4$  дадут график ослабления на рис. 10.15, б.

## 10.4. Применение реактансного преобразования частоты для расчета ФВЧ, ПФ и РФ

Знание характеристик ФНЧ позволяет определить характеристики других фильтров – ФВЧ, ПФ и РФ.

Для этого достаточно применить частотное преобразование, при помощи которого можно перейти от синтезированного ФНЧ, который мы будем называть фильтр-прототип нижних частот (ФПНЧ), к любому другому типу фильтра.

Таким образом, при синтезе ФВЧ, ПФ и РФ можно ограничиться лишь синтезом ФПНЧ, а затем, используя преобразование путем простой замены переменной, получить нужный фильтр. Такое преобразование называется реактансное преобразование частоты.

Формулы реактансного преобразования частоты имеют следующий вид:

$$\Phi\Pi\Pi H\Psi \to \Phi\Pi\Psi \quad \hat{p} = \frac{p}{2\pi f_0},$$

где  $f_0$  – граничная частота полосы пропускания ФНЧ.

$$\Phi\Pi H \Psi \to \Phi B \Psi \quad \hat{p} = \frac{2\pi f_0}{p}$$

где  $f_0$  – граничная частота полосы пропускания ФВЧ.

$$\Phi\Pi H \Psi \to \Pi \Phi \ \hat{p} = k(\frac{p}{2\pi f_0} + \frac{2\pi f_0}{p})$$

 $f_0 = \sqrt{f_{-1} \cdot f_1}, k = \frac{f_0}{f_1 - f_{-1}}; f_{-1}, f_1$  – граничные частоты полосы где

пропускания ПФ.

$$\Phi\Pi H\Psi \to P\Phi \ \hat{p} = \frac{1}{k(\frac{p}{2\pi f_0} + \frac{2\pi f_0}{p})}$$

где  $f_0 = \sqrt{f_{-1} \cdot f_1}$ ,  $k = \frac{f_0}{f_1 - f_{-1}}$ ;  $f_{-1}$ ,  $f_1$  – граничные частоты полосы

пропускания РФ.

Передаточная функция проектируемого фильтра H(p), находится частотным преобразованием передаточной функции  $H(\hat{p})$  ФПНЧ (табл. 10.1). При этом используются формулы реактансного преобразования частоты, приведенные выше.

Таблица 10.1

| Передаточная<br>Функция<br>ФПНЧ $H(\hat{p})$                                 | Формула<br>преобразования                                            | Передаточная функция<br>фильтра <i>H</i> ( <i>p</i> )                                                                                       | Тип<br>фильтра |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\frac{\frac{1}{\hat{p}+\beta}}{\frac{1}{\hat{p}^2+\beta_1\hat{p}+\beta_0}}$ | $\hat{p} = \frac{p}{2\pi f_0}$                                       | $\frac{\frac{2\pi f_{0}}{p+2\pi f_{0}\beta}}{\frac{(2\pi f_{0})^{2}}{p^{2}+2\pi f_{0}\beta_{1}p+(2\pi f_{0})^{2}\beta_{0}}}$                | ФНЧ            |
| $\frac{\frac{1}{\hat{p}+\beta}}{\frac{1}{\hat{p}^2+\beta_1\hat{p}+\beta_0}}$ | $\hat{p} = \frac{2\pi f_0}{p}$                                       | $\frac{\frac{p/\beta}{p+2\pi f_0/\beta}}{\frac{p^2/\beta_0}{p^2+2\pi f_0\frac{\beta_1}{\beta_0}p+\frac{(2\pi f_0)^2}{\beta_0}}}$            | ФВЧ            |
| $\frac{\frac{1}{\hat{p}+\beta}}{\frac{1}{\hat{p}^2+\beta_1\hat{p}+\beta_0}}$ | $\hat{p} = k \left( \frac{p}{2\pi f_0} + \frac{2\pi f_0}{p} \right)$ | $\frac{(2\pi f_0 / k) p}{p^2 + \frac{2\pi f_0 \beta}{k} p + (2\pi f_0)^2} \frac{(2\pi f_0 / k)^2 p^2}{\frac{(2\pi f_0 / k)^2 p^2}{V_1(p)}}$ | ПФ             |

# Нахождение *H*(*p*) заданного типа фильтра с помощью реактансного преобразования частоты

$$\frac{1}{\hat{p}+\beta} \\ \frac{1}{\hat{p}^{2}+\beta_{1}\hat{p}+\beta_{0}} \begin{vmatrix} \hat{p} = \frac{1}{k\left(\frac{p}{2\pi f_{0}} + \frac{2\pi f_{0}}{p}\right)} \\ \frac{1}{k\left(\frac{p}{2\pi f_{0}} + \frac{2\pi f_{0}}{p}\right)} \end{vmatrix} \qquad \frac{\left(\frac{1/\beta}{p^{2} + \left(2\pi f_{0}\right)^{2}}\right)}{\left(\frac{1/\beta_{0}}{p^{2} + \left(2\pi f_{0}\right)^{2}}\right)^{2}} \\ \frac{\left(\frac{1/\beta_{0}}{p^{2} + \left(2\pi f_{0}\right)^{2}}\right)^{2}}{V_{1}(p)} \end{vmatrix} \qquad P\Phi$$

Следует обратить внимание на то, что порядок передаточных функций H(p) полосового и режекторного фильтров вдвое превышает порядок их низкочастотных прототипов. Поэтому полином  $V_1(p)$ , полученный частотным преобразованием полинома  $V(\hat{p})$  второго порядка, содержит два квадратичных сомножителя:

$$W_1(p) = \left(p^2 + a_{11}p + a_{01}\right)\left(p^2 + a_{12}p + a_{02}\right).$$

Для вычисления коэффициентов квадратичных сомножителей полинома V<sub>1</sub>(*p*) можно воспользоваться следующим алгоритмом:

1) 
$$D = \left[ \left( 4k^{2} + \tilde{\beta}_{0} \right)^{2} - 4\tilde{\beta}_{1}^{2} \cdot k^{2} \right]^{0,5};$$
  
2) 
$$A = \left[ 2\left( D - 4k^{2} - \tilde{\beta}_{0} \right) + \tilde{\beta}_{1}^{2} \right]^{0,5};$$
  
3) 
$$a_{11,12} = \left( \tilde{\beta}_{1} \pm A \right) \frac{\pi \cdot f_{0}}{k};$$
  
4) 
$$a_{01,02} = \left( D + \tilde{\beta}_{0} \pm \tilde{\beta}_{1} \frac{D - 4k^{2} + \tilde{\beta}_{0}}{A} \right) \left( \frac{\pi \cdot f_{0}}{k} \right)^{2},$$

где для ПФ  $\tilde{\beta}_0 = \beta_0$ ,  $\tilde{\beta}_1 = \beta_1$ ; для РФ  $\tilde{\beta}_0 = 1/\beta_0$ ,  $\tilde{\beta}_1 = \beta_1/\beta_0$ .

Следует помнить, что коэффициенты  $a_{ik}$  полинома Гурвица  $V_1(p)$  должны быть вещественными положительными.

Ниже приводятся основные этапы расчета и формулы, которые рекомендуется использовать при расчете фильтров.

1. По заданным требованиям к фильтру определяют требования к ФПНЧ.

Сначала определяют порядок ФПНЧ.

Для фильтров с характеристиками Баттерворта порядок находится по формуле:

$$n \ge \frac{a_0 - 10 \lg (10^{0, 1\Delta a} - 1)}{20 \lg \hat{\omega}_k} \,. \tag{10.24}$$

Для фильтров с характеристиками Чебышева:

$$n \ge \frac{a_0 + 6 - 10 \lg (10^{0, 1\Delta a} - 1)}{20 \lg (\hat{\omega}_k + \sqrt{\hat{\omega}_k^2 - 1})}.$$
(10.25)

В выражениях (10.24) и (10.25) нормированная граничная частота полосы задерживания  $\hat{\omega}_k$  ФПНЧ рассчитывается по формулам:

для ФНЧ: 
$$\hat{\omega}_k = \frac{f_k}{f_0};$$
 (10.26)

r

для ФВЧ: 
$$\hat{\omega}_k = \frac{J_0}{f_k};$$
 (10.27)

для ПФ: 
$$\hat{\omega}_k = k(\frac{f_k}{f_0} - \frac{f_0}{f_k});$$
 (10.28)

для РФ: 
$$\hat{\omega}_k = \left[ k \left( \frac{f_k}{f_0} - \frac{f_0}{f_k} \right) \right]^{-1}$$
. (10.29)

В выражениях (10.28) и (10.29)

$$f_0 = \sqrt{f_{-1} \cdot f_1}, \tag{10.30}$$

$$k = \frac{f_0}{f_1 - f_{-1}} \,. \tag{10.31}$$

Рассчитанное значение *n* следует округлить до ближайшего большего целого числа.

2. Находят схему ФПНЧ.

Схемы ФПНЧ и нумерация их элементов в зависимости от порядка фильтра-прототипа и режима работы приведены на рисунках 10.16 ÷ 10.18: на рис. 10.16 –для режима двусторонней нагрузки; на рис. 10.17 – для режима заданного входного напряжения и на рис. 10.18 – для режима холостого хода.



*n* – чётное



для режима холостого хода

3. Значения нормированных параметров элементов ФПНЧ  $\alpha_k$  для различных заданных величин неравномерности характеристики ослабления в полосе пропускания  $\Delta a$  приводятся в справочной литературе по фильтрам.

Схему ФПНЧ преобразуют в схему заданного фильтра в соответствии с таблицей перехода 10.2:

Таблица 10.2

| Элемент                                                                    | емент Формула Элемент фильтра                |                                                                                                                                                                                                                                                                                       |                                                                                       | Тип     |
|----------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|
| ФПНЧ                                                                       | преобразования                               |                                                                                                                                                                                                                                                                                       |                                                                                       | фильтра |
| $\hat{Z}_{\gamma} = \hat{p}\alpha_{\gamma}$                                | $\hat{p} = rac{1}{\hat{p}'}$                | $\hat{Z}_{\gamma} = \frac{\alpha_{\gamma}}{\hat{p}'} = \frac{1}{\frac{1}{\alpha_{\gamma}}\hat{p}'} = \frac{1}{\hat{p}'\hat{C}_{\gamma}}$ $\stackrel{\hat{C}_{\gamma}}{}$                                                                                                              | $\hat{C}_{\gamma} = \frac{1}{\alpha_{\gamma}}$                                        | ФDU     |
| $\hat{Z}_{\mu} = \frac{1}{\hat{p}\alpha_{\mu}}$ $\overset{\alpha_{\mu}}{}$ | $\hat{p} = \frac{1}{\hat{p}'}$               | $\hat{Z}_{\mu} = \frac{\hat{p}'}{\alpha_{\mu}} = \frac{1}{\alpha_{\mu}} \hat{p}' = \hat{p}' \hat{L}_{\mu}$ $\hat{L}_{\mu}$                                                                                                                                                            | $\hat{L}_{\mu} = \frac{1}{\alpha_{\mu}}$                                              | ФВЧ     |
| $\hat{Z}_{\gamma} = \hat{p}\alpha_{\gamma}$                                | $\hat{p} = k(\hat{p}' + \frac{1}{\hat{p}'})$ | $\hat{Z}_{\gamma} = \alpha_{\gamma} k \left( \hat{p}' + \frac{1}{\hat{p}'} \right) =$ $= \alpha_{\gamma} k \hat{p}' + \frac{1}{\frac{1}{k\alpha_{\gamma}} \hat{p}'} =$ $= \hat{p}' \hat{L}_{\gamma} + \frac{1}{\hat{p}' \hat{C}_{\gamma}}$ $\hat{C}_{\gamma} \qquad \hat{L}_{\gamma}$ | $\hat{L}_{\gamma} = k\alpha_{\gamma}$ $\hat{C}_{\gamma} = \frac{1}{k\alpha_{\gamma}}$ |         |

Схема преобразования ФПНЧ в заданный тип фильтра

| $\hat{Z}_{\mu} = \frac{1}{\hat{p}\alpha_{\mu}}$ $\alpha_{\mu}$ | $\hat{p} = k(\hat{p}' + \frac{1}{\hat{p}'})$           | $ \hat{Z}_{\mu} = \frac{1}{\alpha_{\mu}k(\hat{p}' + \frac{1}{\hat{p}'})} = \\ = \frac{1}{\alpha_{\mu}k\hat{p}' + \frac{1}{\hat{p}'\frac{1}{\alpha_{\mu}k}}} = \\ = \frac{1}{\hat{p}'\hat{C}_{\mu} + \frac{1}{\hat{p}'\hat{L}_{\mu}}} \\ - \hat{L}_{\mu} \\ $ | $\hat{L}_{\mu} = \frac{1}{\alpha_{\mu}k}$ $\hat{C}_{\mu} = k\alpha_{\mu}$                     | ΠΦ |
|----------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----|
| $\hat{Z}_{\gamma} = \hat{p}\alpha_{\gamma}$                    | $\hat{p} = \frac{1}{k(\hat{p}' + \frac{1}{\hat{p}'})}$ | $\hat{Z}_{\gamma} = \frac{\alpha_{\gamma}}{k(\hat{p}' + \frac{1}{\hat{p}'})} =$ $= \frac{1}{\frac{k}{\alpha_{\gamma}}\hat{p}' + \frac{1}{\hat{p}'\frac{\alpha_{\gamma}}{k}}} =$ $= \frac{1}{\hat{p}'\hat{C}_{\gamma} + \frac{1}{\hat{p}'\hat{L}_{\gamma}}}$ $\hat{L}_{\gamma}$ $\hat{L}_{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\hat{L}_{\gamma} = \frac{\alpha_{\gamma}}{k}$ $\hat{C}_{\gamma} = \frac{k}{\alpha_{\gamma}}$ | РФ |
| $\hat{Z}_{\mu} = \frac{1}{\hat{p}\alpha_{\mu}}$ $\alpha_{\mu}$ | $\hat{p} = \frac{1}{k(\hat{p}' + \frac{1}{\hat{p}'})}$ | $\hat{Z}_{\mu} = \frac{k\left(\hat{p}' + \frac{1}{\hat{p}'}\right)}{\alpha_{\mu}} =$ $= \frac{k}{\alpha_{\mu}}\hat{p}' + \frac{1}{\frac{\alpha_{\mu}}{k}\hat{p}'} =$ $= \hat{p}'\hat{L}_{\mu} + \frac{1}{\hat{p}'\hat{C}_{\mu}}$ $\stackrel{\hat{C}_{\mu}}{\longleftarrow} \hat{L}_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\hat{L}_{\mu} = \frac{k}{\alpha_{\mu}}$ $\hat{C}_{\mu} = \frac{\alpha_{\mu}}{k}$             |    |

4. Производят денормирование элементов фильтра по формулам:

$$L_i = \frac{\hat{L}_i R_1}{2\pi f_0}; \quad C_i = \frac{\hat{C}_i}{2\pi f_0 R_1}; \quad R_2 = r_2 R_1.$$
 (10.32)

# Примеры применения реактансного преобразования частоты для расчета фильтров Пример 10.4.1. Расчет ФВЧ в режиме двухсторонней нагрузки с характеристикой Чебышева

Исходные данные для расчёта известны:

 $\Delta a = 1,25 \text{ дБ}; f_0 = 7,0 \text{ к} \Gamma \text{ц}; \quad f_k = 2,0 \text{ к} \Gamma \text{ц}; \quad a_0 = 45,0 \text{ дБ}; \quad R_1 = 150 \text{ Ом}.$ Расчётное значение порядка фильтра найдем по формуле (10.25)

 $n_{\text{расч}} = 3,336$ , где значение  $\hat{\omega}_k$  рассчитывается по формуле (10.27) и равно  $\hat{\omega}_k = 3,5$ . После округления  $n_{\text{расч}}$  до ближайшего большего целого числа получим порядок ФПНЧ (т.е. число реактивных элементов, содержащихся в его схеме), он будет равен 4.



Рис. 10.19. Схема ФПНЧ 4-го порядка

 $\alpha_1 = 2,283;$   $\alpha_2 = 1,011;$   $\alpha_3 = 3,034;$ Ориентировочная  $a_3$ 

характеристика ослабления этого ФПНЧ приведена на рис. 10.20 (обратите внимание на то, что число максимумов и минимумов характеристики ослабления в полосе пропускания на единицу превосходит порядок фильтра, т.е. n + 1 = 5.

Преобразуем данный ФПНЧ в ФВЧ. Воспользуемся схемами перехода, приведённым в табл. 10.2. На рис. 10.19 показана схема ФПНЧ 4-го порядка. Нормированные параметры элементов двусторонне нагруженного ФПНЧ с характеристикой Чебышёва при  $\Delta a = 1,25$  дБ можно найти в справочной литературе:

$$\alpha_4 = 0,7610; \quad r_2 = 3,000.$$



Рис. 10.20. График ослабления ФПНЧ с характеристикой Чебышева 4-го порядка

Схема ФВЧ принимает вид, указанный на рис. 10.21, а значения параметров элементов фильтра на основании (10.32) вычисляются по формулам:

$$C_{1} = \frac{\hat{C}_{1}}{2\pi f_{0}R_{1}} = \frac{1}{\alpha_{1}2\pi f_{0}R_{1}}; \qquad L_{2} = \frac{\hat{L}_{2}R_{1}}{2\pi f_{0}} = \frac{R_{1}}{\alpha_{2}2\pi f_{0}}; \\ C_{3} = \frac{\hat{C}_{3}}{2\pi f_{0}R_{1}} = \frac{1}{\alpha_{3}2\pi f_{0}R_{1}}; \qquad L_{4} = \frac{\hat{L}_{4}R_{1}}{2\pi f_{0}} = \frac{R_{1}}{\alpha_{4}2\pi f_{0}}.$$

 $C_1 = 66,39$  нФ;  $L_2 = 3,373$  мГн;  $C_3 = 49,96$  нФ;  $L_4 = 4,482$  мГн;  $R_1 = 150$  Ом;  $R_2 = 450$  Ом.

Ориентировочная характеристика ослабления ФВЧ показана на рис. 10.22.

Ослабление на границе полосы задерживания ФВЧ найдем из формулы (10.25). Выразим *a*<sub>0</sub> и получим следующую формулу:

$$a_{0} = 20 \cdot n \cdot \lg \left( \widehat{\omega}_{k} + \sqrt{\widehat{\omega}_{k}^{2} - 1} \right) - 6 + 10 \cdot \lg (10^{0,1\Delta a} - 1).$$
  
$$a_{0} = 20 \cdot 4 \cdot \lg \left( 3.5 + \sqrt{3.5^{2} - 1} \right) - 6 + 10 \cdot \lg (10^{0,1 \cdot 1.25} - 1) = 56.1 \, \mathrm{дE} > 45 \, \mathrm{qE}.$$



Рис. 10.21. Схема ФВЧ 4-го порядка



Рис. 10.22. График ослабления ФВЧ с характеристикой Чебышёва 4-го порядка

Полученный запас по ослаблению на границе полосы задерживания рассчитанного ФВЧ объясняется округлением при расчете порядка фильтра  $n_{\text{расч}} = 3,336$  до n = 4.

Характеристика ослабления  $\Phi B \Psi$  в полосе пропускания имеет число максимумов и минимумов, равное n + 1 = 5.

Операторная передаточная функция ФВЧ 4-го порядка находится частотным преобразованием передаточной функции  $H(\hat{p})$  фильтра-

прототипа нижних частот. Операторная функция для ФПНЧ с характеристикой Чебышева имеет вид:

$$H(\hat{p}) = \frac{b_4}{V_4(\hat{p})},$$

где  $V_4(\hat{p})$  – полином Гурвица для фильтра 4-порядка с характеристикой Чебышева (можно найти в справочной литературе),  $b_4$  – коэффициент, который определяет величину ослабления фильтра на частоте  $\hat{\omega} = 0$ . Перейдем к H(p) ФВЧ с помощью табл. 10.1, используя формулу  $\hat{p} = \frac{2\pi f_0}{n}$ ,

$$H(p) = \frac{b_0 p^4}{V_4(p)} = \frac{b_0 p^4}{p^4 + a_1 p^3 + a_2 p^2 + a_3 p + a_4}.$$

## Пример 10.4.2. Расчет ПФ в режиме двухсторонней нагрузки с характеристикой Чебышева

Пусть заданы значения ослабления  $\Delta a, a_0$ , частоты  $f_1, f_{-1}, f_k$ , значение  $R_1$ .

По формулам 10.28, 10.30, 10.31 найдем значения  $f_0 = \sqrt{f_{-1} \cdot f_1}$ ,  $k = \frac{f_0}{f_1 - f_{-1}}$  и  $\hat{\omega}_k$ . По формуле 10.25 рассчитаем порядок ФПНЧ  $n_{\text{расч}}$ .

Округлим  $n_{\text{расч}}$  до ближайшего большего целого числа. Пусть в результате расчетов был получен порядок ФПНЧ, равный 4. Схема ФПНЧ приведена на рис. 10.19.

Покажем, как рассчитать полосовой фильтр. Воспользуемся таблицей 10.2 и перейдем к схеме ПФ, приведённой на рис. 10.23. Для вычисления параметров элементов схемы ПФ можно воспользоваться данными табл. 10.2 и формулами (10.32):

$$L_{i} = \frac{\hat{L}_{i}R_{1}}{2\pi f_{0}} = \frac{k\alpha_{i}R_{1}}{2\pi f_{0}}; \quad C_{i} = \frac{\hat{C}_{i}}{2\pi f_{0}R_{1}} = \frac{1}{k\alpha_{i}2\pi f_{0}R_{1}}; \quad i = 1, 3,$$
$$L_{j} = \frac{\hat{L}_{j}R_{1}}{2\pi f_{0}} = \frac{R_{1}}{k\alpha_{j}2\pi f_{0}}; \quad C_{j} = \frac{\hat{C}_{j}}{2\pi f_{0}R_{1}} = \frac{k\alpha_{j}}{2\pi f_{0}R_{1}}; \quad j = 2, 4.$$



Рис. 10.23. Схема полосового фильтра

Ориентировочная характеристика ослабления полосового фильтра приведена на рис. 10.24. Следует обратить внимание на то, что число реактивных элементов ПФ вдвое превосходит число реактивных элементов ФПНЧ, поэтому число максимумов и минимумов в полосе пропускания ПФ оказывается равным 2n+1 = 9.

Операторная передаточная функция ПФ 4-го порядка находится частотным преобразованием передаточной функции  $H(\hat{p}) = \frac{b_4}{V_4(\hat{p})}$  фильтра-прототипа нижних частот.

Перейдем к H(p) ПФ с помощью табл. 10.1, используя формулу  $\hat{p} = k(\frac{p}{2\pi f_0} + \frac{2\pi f_0}{p}):$ 

$$H(p) = \frac{b_0 p^4}{V_8(p)'}$$

где  $V_8(p)$  – полином Гурвица восьмого порядка (n = 8).



Рис. 10.24. График ослабления полосового фильтра с характеристикой Чебышева

## Пример 10.4.3. Расчет РФ в режиме двухсторонней нагрузки с характеристикой Чебышева

Исходные данные для расчёта:

 $f_{-1} = 2,3$  кГц;  $f_k = 7,2$  кГц;  $f_1 = 9,8$  кГц;  $a_0 = 30,0$  дБ;  $R_1 = 300$  Ом.

Рассчитаем значение  $n_{\text{расч}}$  по формуле (10.25), подставив в нее значения (10.29), (10.30), (10.31) и получим  $n_{\text{расч}} = 3,843$ . После округления до ближайшего большего целого числа получим порядок ФПНЧ (т.е. число реактивных элементов, содержащихся в его схеме) равным 4. Значение k = 0,6331;  $\hat{\omega}_k = 1,8432$ .

На рис. 10.25 показана схема режекторного фильтра, полученного в результате преобразования ФПНЧ 4-го порядка в соответствие с табл. 10.2.



Рис. 10.25. Схема режекторного фильтра

Для вычисления параметров элементов схемы РФ следует воспользоваться данными табл. 10.2 и выражениями (10.32):

$$L_{i} = \frac{\hat{L}_{i}R_{1}}{2\pi f_{0}} = \frac{\alpha_{i}R_{1}}{k2\pi f_{0}}; \quad C_{i} = \frac{\hat{C}_{i}}{2\pi f_{0}R_{1}} = \frac{k}{\alpha_{i}2\pi f_{0}R_{1}}; \quad i = 1, 3;$$
  
$$L_{j} = \frac{\hat{L}_{j}R_{1}}{2\pi f_{0}} = \frac{kR_{1}}{\alpha_{j}2\pi f_{0}}; \quad C_{j} = \frac{\hat{C}_{j}}{2\pi f_{0}R_{1}} = \frac{\alpha_{j}}{k2\pi f_{0}R_{1}}; \quad j = 2, 4.$$

Значения параметров элементов схемы РФ Чебышёва:

 $\begin{array}{ll} L_1 = 36,27 \ {\rm mFh}; & C_1 = 30,98 \ {\rm h}\Phi; \ L_2 = 6,297 \ {\rm mFh}; & C_2 = 178,4 \ {\rm h}\Phi; \\ L_3 = 48,19 \ {\rm mFh}; & C_3 = 23,31 \ {\rm h}\Phi; \ L_4 = 8,366 \ {\rm mFh}; & C_2 = 134,3 \ {\rm h}\Phi; \\ R_1 = 300 \ {\rm Om}; & R_2 = 900 \ {\rm Om}. \end{array}$ 

Ориентировочная характеристика ослабления режекторного фильтра показана на рис. 10.26. Число максимумов и минимумов в каждой полосе пропускания РФ равно n+1 = 5.



Рис. 10.26. График ослабления режекторного фильтра с характеристикой Чебышёва

Для расчёта ослабления  $a_0$ , дБ на частоте  $f_k$  следует воспользоваться выражениями (10.25). Учитывая, что ослабление на частоте проектируемого фильтра равно ослаблению ФПНЧ на частоте  $\omega_k$ , расчёт  $a_0$  следует вести по формуле:

$$a_0 = 20 \cdot n \cdot \lg \left(\widehat{\omega}_k + \sqrt{\widehat{\omega}_k^2 - 1}\right) - 6 + 10 \cdot \lg(10^{0, 1\Delta a} - 1).$$

$$a_0 = 20 \cdot 4 \cdot \lg (1,8432 + \sqrt{1,8432^2 - 1}) - 6 + 10 \cdot \lg (10^{0,1 \cdot 1.25} - 1) = 31,7 \, \mathrm{dE} > 30 \, \mathrm{dE}.$$

Операторная передаточная функция РФ 4-го порядка находится частотным преобразованием передаточной функции  $H(\hat{p}) = \frac{b_4}{V_4(\hat{p})}$  фильтра-прототипа нижних частот.

 $\hat{p} = \frac{\Pi$ ерейдем к H(p) РФ с помощью табл. 10.1, используя формулу  $\hat{p} = \frac{1}{k(\frac{p}{2\pi f_0} + \frac{2\pi f_0}{p})}$ :

$$H(p) = \frac{b_0(p^2 + (2\pi f_0)^2)^4}{V_8(p)},$$

где  $V_8(p)$  – полином Гурвица восьмого порядка (n = 8).

## 10.5. Реализация передаточных функций ARC-цепями методом аналоговой вычислительной техники

Рассмотрим возможности реализации передаточных функций

$$H(p) = \frac{W(p)}{V(p)} = \frac{b_0 p^m + b_1 p^{m-1} + \dots + b_{m-1} p + b_m}{p^n + a_1 p^{n-1} + \dots + a_{n-1} p + a_n},$$

используя цепи, которые помимо активных элементов в виде операционных усилителей (ОУ), содержат резистивные сопротивления и емкости и не содержат индуктивностей.

Схемное изображение, режимы работы и схемы замещения ОУ приведены в табл. 1.1.

В настоящее время ARC-цепи составляют основу аналоговой микроэлектроники.

Элементный базис аналоговой вычислительной техники (ABT), позволяющий реализовать любую передаточную функцию, включает в себя инвертирующие усилители, усилители-сумматоры, интеграторы, интеграторы-сумматоры, дифференциаторы и т.д.

Любые математические операции: умножение на вещественные множители, суммирование, интегрирование, дифференцирование могут с высокой точностью выполняться цепями с операционными усилителями.

Рассмотрим основные звенья АВТ.



Рис. 10.27. Обобщенная схема

На рис. 10.27 показана обобщенная схема, пригодная для реализации любого из перечисленных выше элементов ABT.

Связь между выходным и входными напряжениями нетрудно получить методом узловых напряжений, составив уравнения для третьего и четвертого узлов:

$$U_{\rm Bbix} = -\frac{Z_0}{Z_{11}}U_{11} - \frac{Z_0}{Z_{12}}U_{12} + \left(\frac{Z_0}{Z_{11}} + \frac{Z_0}{Z_{12}} + 1\right) \cdot \frac{1}{Z_{21} + Z_{22}} \cdot (Z_{22}U_{21} + Z_{21}U_{22}).$$

Далее, полагая равными нулю те или иные входные напряжения, при определенных значениях операторных сопротивлений можно получить схемы различных устройств ABT.

#### Инвертирующий усилитель

На рис. 10.28 показана схема инвертирующего усилителя.

 $egin{aligned} U_{12} &= U_{21} = U_{22} = 0; \ Z_{21} &= Z_{22} = 0; \ Z_{12} & o \infty; \ Z_{11} &= R_{11}; \ Z_0 &= R_0. \ \Pi \mathrm{pu}$  этом  $U_\mathrm{BMX} &= -rac{R_0}{R_{11}} U_{11}. \end{aligned}$ 



Рис. 10.28. Схема инвертирующего усилителя

#### Неинвертирующий усилитель

На рис. 10.29 показана схема неинвертирующего усилителя.

 $U_{11} = U_{12} = U_{22} = 0;$   $Z_{12} \to \infty; Z_{22} \to \infty; Z_{21} = 0;$   $Z_{11} = R_{11}; Z_0 = R_0.$ При этом  $U_{\text{вых}} = \left(\frac{R_0}{R_{11}} + 1\right) U_{21}.$ 



Рис. 10.29. Схема неинвертирующего усилителя

#### Взвешенный сумматор с инверсией входных напряжений

На рис. 10.30 показана схема взвешенного сумматора с инверсией входных напряжений.

$$U_{21} = U_{22} = 0;$$
  

$$Z_{21} = Z_{22} = 0; Z_{12} = R_{12};$$
  

$$Z_{11} = R_{11}; Z_0 = R_0.$$

При этом  $U_{\text{вых}} = -\frac{R_0}{R_{11}}U_{11} - \frac{R_0}{R_{12}}U_{12}.$ 



Рис. 10.30. Схема взвешенного сумматора с инверсией входных напряжений

## Сумматор без инверсии входных напряжений

На рис. 10.31 показана схема сумматора без инверсии входных напряжений.

$$\begin{array}{c} U_{11}=U_{12}=0;\\ Z_{21}=R_{21};\, Z_{22}=R_{22};\, Z_{12}\rightarrow\infty;\\ Z_{11}=R_{11};\, Z_{0}=R_{0}. \end{array}$$



Рис. 10.31. Схема сумматора без инверсии входных напряжений

При этом

$$U_{\rm Bbix} = \left(\frac{R_0}{R_{11}} + 1\right) \left(\frac{R_{22}}{R_{21} + R_{22}} U_{21} + \frac{R_{21}}{R_{21} + R_{22}} U_{22}\right).$$

#### Интегратор

На рис. 10.33 показана схема интегратора.

$$U_{12} = U_{21} = U_{22} = 0; \quad Z_{12} \to \infty;$$
  

$$Z_{21} = Z_{22} = 0;$$
  

$$Z_{11} = R_{11}; \quad Z_0 = \frac{1}{pC_0}.$$
  
При этом  $U_{\text{вых}} = -\frac{1}{C_0R_{11}}\frac{U_{11}}{p}.$ 



Рис. 10.33. Схема интегратора

# Алгебраический сумматор

На рис. 10.32 показана схема алгебраического сумматора.

$$\begin{array}{l} U_{12}=0; \ Z_{12} \rightarrow \infty; \\ Z_{21}=R_{21}; \ Z_{22}=R_{22}; \\ Z_{11}=R_{11}; \ Z_{0}=R_{0}. \end{array}$$



Рис. 10.32. Схема алгебраического сумматора

При этом
$$U_{\rm bbix} = -\frac{R_0}{R_{11}}U_{11} + \left(\frac{R_0}{R_{11}} + 1\right)\frac{1}{R_{21} + R_{22}}(R_{22}U_{21} + R_{21}U_{22}).$$

## Интегратор-сумматор

На рис. 10.34 показана схема интегратора-сумматора.

$$U_{21} = U_{22} = 0;$$
  

$$Z_{21} = Z_{22} = 0;$$
  

$$Z_{11} = R_{11}; Z_{12} = R_{12}; \cdots Z_{1n} = R_{1n}$$
  

$$Z_0 = \frac{1}{pC_0}.$$

При этом

$$U_{\rm Bbix} = -\sum_{k=1}^{n} \frac{1}{C_0 R_{1k}} \frac{U_{1k}}{p}.$$



Рис. 10.34. Схема интегратора-сумматора

## Дифференциатор

На рис. 10.35 показана схема дифференциатора.

$$egin{aligned} U_{12} &= U_{21} = U_{22} = 0; \ Z_{12} 
ightarrow \infty; \ Z_{21} &= Z_{22} = 0; \ Z_{11} &= rac{1}{p \mathcal{C}_{11}}; \ Z_0 &= R_0. \ \end{array}$$
 При этом  $U_{\mathrm{Bbix}} &= -p \mathcal{C}_0 R_{11} U_{11}. \end{aligned}$ 



Рис. 10.35. Схема дифференциатора

Следует иметь ввиду, что ARC-звенья могут содержать функциональные блоки, схемы которых отличаются от приведенных на рис. 10.28 – 10.35. В этом случае связь между входными и выходными напряжениями можно получить либо соответствующим преобразованием обобщенной схемы (рис. 10.27), либо непосредственно методом узловых напряжений.

Рассмотренные выше звенья АВТ используются для реализации передаточных функций.

В качестве примера реализуем передаточную функцию ФНЧ второго порядка:

$$H(p) = \frac{U_2(p)}{U_1(p)} = \frac{b_0}{p^2 + a_1 p + a_2},$$
 (10.33, a)

тогда  $U_2(p) \cdot (p^2 + a_1p + a_2) = b_0 \cdot U_1(p).$ 

Отсюда  $U_2(p) \cdot p^2 = b_0 \cdot U_1(p) - a_1 p \cdot U_2(p) - a_2 \cdot U_2(p).$ 

Разделим правую и левую часть на  $p^2$  и получим следующее выражение:

$$U_2(p) = b_0 \cdot \frac{U_1(p)}{p^2} - a_1 \cdot \frac{U_2(p)}{p} - a_2 \cdot \frac{U_2(p)}{p^2}.$$
 (10.33, б)

Анализ полученного выражения показывает, что для построения ARCцепи, реализующей данное выражение методом ABT, нужны два интегратора-сумматора и один инвертор. Одна из возможных схем показана на рис. 10.36.



Рис. 10.36. Схема ARC-цепи, построенная по методу ABT

Представим схему звена в виде совокупности трех блоков, используя следующее правило: каждый блок содержит только один ОУ. Входы блока соединены с выходами других блоков и, возможно, со входом или выходом звена.

Блок **I** – интегратор-сумматор (рис. 10.34), поэтому

$$U_4 = -\frac{1}{CR_1} \frac{U_1}{p} - \frac{1}{CR_3} \frac{U_3}{p}.$$
 (10.34)

Блок **II** – интегратор-сумматор (рис. 10.34), поэтому.

$$U_2 = -\frac{1}{CR_4} \frac{U_4}{p} - \frac{1}{CR_2} \frac{U_2}{p}.$$
 (10.35)

Блок III – инвертирующий усилитель (рис. 10.28), следовательно:

$$U_3 = -\frac{R_0}{R_0} U_2 = -U_2. (10.36)$$

Подставим (10.36) в (10.34)

$$U_4 = -\frac{1}{CR_1}\frac{U_1}{p} + \frac{1}{CR_3}\frac{U_2}{p},$$

а затем получившееся выражение для U<sub>4</sub> подставим в (10.35.) и получим

$$U_{2} = -\frac{1}{CR_{4}p} \left( -\frac{1}{CR_{1}} \frac{U_{1}}{p} + \frac{1}{CR_{3}} \frac{U_{2}}{p} \right) - \frac{1}{CR_{2}} \frac{U_{2}}{p} =$$
$$= \frac{1}{C^{2}R_{4}R_{1}} \frac{U_{1}}{p^{2}} - \frac{1}{CR_{2}} \frac{U_{2}}{p} - \frac{1}{C^{2}R_{3}R_{4}} \frac{U_{2}}{p^{2}}.$$

Полученное выражение совпадает с выражением (10.33, б) и действительно реализует операторную передаточную функцию (10.33, а), если

$$\frac{1}{C^2 R_4 R_1} = b_0$$
;  $\frac{1}{C R_2} = a_1$ ;  $\frac{1}{C^2 R_3 R_1} = a_2$ 

Известны и широко применяются в задачах синтеза электрических фильтров ARC-звенья второго порядка, построенные на иных принципах и содержащие меньшее число операционных усилителей. Такие звенья будут рассматриваться в разделе 10.6 в связи с задачами синтеза электрических фильтров высоких порядков.

#### 10.6. Принцип каскадно-развязанной реализации ARC-фильтров

Процедура каскадно-развязанной реализации сводится к тому, что исходная операторная передаточная функция H(p) высокого порядка представляется в виде произведения простейших, не выше второго порядка, передаточных функций, каждая из которых реализуется отдельным звеном, не выше второго порядка.

Электрическая цепь при использовании этого метода представляет собой каскадное соединение отдельных четырёхполюсников (рис. 10.37).

При этом каждый четырехполюсник нагружен на достаточно большое сопротивление, и  $R_{\text{вх}_{\kappa}} \gg R_{\text{вых}_{\kappa-1}}$ , поэтому соединение называется каскадноразвязанным, и работа одного четырехполюсника не влияет на работу другого.



Рис. 10.37. Схема каскадного соединения четырёхполюсников

Операторная передаточная функция каскадно-развязанного соединения четырехполюсников имеет вид:

$$H(p) = \frac{U_{\text{Bbix}}}{U_{\text{Bx}}} = H_1(p) \cdot H_2(p) \cdots H_N(p).$$

Сомножители в этом выражении представляют собой операторные передаточные функции 1-го и 2-го порядков. В настоящее время созданы обширные каталоги схем реализации таких функций. Там же приводятся расчетные соотношения для вычисления параметров элементов. Режим развязанного включения (высокое входное и низкое выходное сопротивления звеньев) обеспечивается ARC-звеньями.

Схема ARC- фильтра составляется путем каскадно-развязанного соединения звеньев второго и первого порядка, каждое из которых реализует один из сомножителей функции H(p). Эти сомножители для звеньев различных типов должны иметь вид:

$$H_i(p) = \frac{b_{0i}}{p^2 + a_{1i}p + a_{0i}} - для \Phi H \Psi$$
(10.37)

$$H_k(p) = \frac{b_{1k} p}{p^2 + a_{1k} p + a_{0k}} - для \Pi \Phi;$$
(10.38)

$$H_{j}(p) = \frac{b_{2j}p^{2}}{p^{2} + a_{1j}p + a_{0j}} - для \Phi B \Psi;$$
(10.39)

$$H_m(p) = \frac{b_{2m}(p^2 + \omega_{\infty}^2)}{p^2 + a_{1m}p + a_{0m}} - для P\Phi.$$
(10.40)

Кроме того, передаточные функции ФНЧ и ФВЧ нечетных порядков будут содержать по одному сомножителю первого порядка

$$H_{_{\rm Hq}}(p) = \frac{b}{p+a}; \tag{10.41}$$

$$H_{_{\rm BY}}(p) = \frac{b_1 p}{p+a}.$$
 (10.42)

Приведем примеры реализации звеньев 1-го и 2-го порядка: 1. НЧ-звено первого порядка





Рис. 10.38. Схема НЧ-звена первого порядка

2. ВЧ-звено первого порядка



Рис. 10.39. Схема ВЧ-звена первого порядка

3. НЧ-звено второго порядка

$$H_{\rm Bq}(p) = \frac{p}{p + \frac{1}{RC}}.$$



Рис. 10.40. Схема НЧ-звена второго порядка 1

$$H(p) = \frac{\overline{R_1 R_3 C_1 C_2}}{p^2 + \frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) p + \frac{1}{C_1 C_2} \frac{1}{R_3} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)}$$

4. ВЧ-звено второго порядка



Рис. 10.41. Схема ВЧ-звена второго порядка

$$H(p) = \frac{\frac{C_1}{C_1 + C_2} p^2}{p^2 + \frac{1}{C_3 R_2} \cdot \frac{C_1 + C_2 + C_3}{C_1 + C_2} p + \frac{1}{(C_1 + C_2)C_3} \cdot \frac{1}{R_1 R_2}}$$

5. ПФ-звено





6. РФ-звено



Рис. 10.43. Схема РФ-звена

$$H(p) = K \frac{p^2 + \frac{1}{R^2 C^2}}{p^2 + 4 \frac{1}{RC} \cdot \left(1 - \frac{KR_2}{R_1 + R_2}\right)p + \frac{1}{R^2 C^2}}.$$

Рассмотрим алгоритм синтеза ARC-фильтров методом каскадноразвязанной реализации.

1. На первом этапе заданную операторную передаточную функцию высокого порядка разбиваем на сомножители не выше второго порядка.

2. На втором этапе каждый сомножитель реализуем ARC-звеном методом уравнивания коэффициентов.

2.1. Выбор подходящей цепи, которая потенциально способна реализовать заданный сомножитель функции H(p) (потенциально-пригодная цепь),

проводится по двум критериям: вид H(p) сомножителей (10.37 – 10.40) и значения добротности полюса  $Q_{nk}$  сомножителя второго порядка

$$H(p) = rac{b_{0k}}{p^2 + a_{1k}p + a_{0k}},$$
 где  $Q_{\pi k} = rac{\sqrt{a_{0k}}}{a_{1k}}.$ 

При значениях  $Q_{nk} < 5$  для реализации выбираются звенья, представленные на рис. 10.40 – 10.43.

При значениях  $Q_{nk} \ge 5$  для реализации выбираются звенья, построенные по методу ABT (рис. 10.36).

Схемы реализующих ARC-звеньев приведены в справочной литературе.

Выбор различных ARC-схем для реализации сомножителей передаточных функций определяется тем, что увеличение добротности полюса  $Q_{nk}$  передаточной функции приводит к росту разброса параметров элементов реализующего звена и увеличению чувствительности к изменению параметров элементов.

2.2. Расчет элементов выбранной цепи, при которых она реализует заданный сомножитель передаточной функции, осуществляется в результате решения системы компонентных уравнений, как при расчете LC-фильтров. Данная система уравнений получается, если приравнять коэффициенты H(p), выраженные через параметры элементов выбранного ARC-звена, к соответствующих коэффициентов заданной численным значениям передаточной функции, подлежащей реализации. операторной B получившейся системе число уравнений чаще всего меньше числа неизвестных параметров элементов. По этой причине избыточные параметры необходимо задать, по возможности положив их равными. При таком подходе расчета параметров элементов цепи ее передаточная функция реализуется с точностью до постоянного множителя, что допустимо.

3. На третьем этапе реализации строится общая схема ARC-фильтра: каскадно соединяются рассчитанные ARC-звенья второго порядка. Звенья следует располагать от входа к выходу в порядке возрастания добротности полюса передачи во избежание их перегрузки, появления нелинейных искажений и в целях улучшения соотношения сигнал/шум.

Если реализуются передаточные функции H(p) ФНЧ и ФВЧ нечетного порядка, то в схеме появляется пассивное RC-звено первого порядка (рис. 10.38, 10.39). И это звено всегда ставится в конце, поскольку для него не выполняется условие каскадно-развязанной реализации  $R_{\text{вхк}} \gg R_{\text{выхк-1}}$ .

Рассмотрим особенности метода каскадно-развязанной реализации ARC-фильтров на примере.

# Пример 10.6.1

Пусть требуется реализовать передаточную функцию вида:

$$H(p) = \frac{b_0 p^2}{(p^2 + a_{11}p + a_{01})(p^2 + a_{12}p + a_{02})}.$$

Представим *H*(*p*) в виде произведения двух функций второго порядка:

$$H(p) = H_1(p) \cdot H_2(p) = \frac{p}{(p^2 + a_{11}p + a_{01})} \cdot \frac{b_0 p}{(p^2 + a_{12}p + a_{02})}$$

Рассчитаем добротности полюса каждого сомножителя:

$$Q_{\pi 1} = \frac{\sqrt{a_{01}}}{a_{11}}; \ \ Q_{\pi 2} = \frac{\sqrt{a_{02}}}{a_{12}}.$$

Предположим, что значения коэффициентов H(p) таковы, что

$$Q_{\pi 1} < 5; \ Q_{\pi 2} < 5; \$$
при этом  $Q_{\pi 1} < \ Q_{\pi 2}$ 

Каждая из функций может быть реализована ARC-звеном рис. 10.42. Передаточная функция ПФ–звена:

$$H(p) = \frac{-\frac{1}{C_2 R_1} p}{p^2 + \frac{1}{R_3} \cdot \left(\frac{1}{C_1} + \frac{1}{C_2}\right) p + \frac{1}{C_1 C_2} \cdot \frac{1}{R_3} \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right)}$$

Нам необходимо реализовать:

$$H_1(p) = \frac{p}{p^2 + a_{11}p + a_{01}}$$

Приравниваем коэффициенты:

$$\begin{cases} \frac{1}{R_3} \cdot \left(\frac{1}{C_1} + \frac{1}{C_2}\right) = a_{11}; \\ \frac{1}{C_1 C_2} \cdot \frac{1}{R_3} \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = a_{01}. \end{cases}$$

Получается 5 неизвестных и 2 уравнения. Можно задать значения  $R_1$ ,  $R_2$ ,  $R_3$ . Остается 2 неизвестных и 2 уравнения. Из этих уравнений получаем значения неизвестных параметров:  $C_1$  и  $C_2$ .

Аналогично поступаем с

$$H_2(p) = \frac{b_0 p}{p^2 + a_{12} p + a_{02}}$$

В качестве схемы ПФ-звена выбираем ARC-звено рис. 10.42. Составляем систему уравнений, приравнивая коэффициенты, находим параметры элементов звена.

Далее каскадно соединяем звенья, при этом на первое место ставим звено с  $Q_{\Pi 1}$ , а на второе – звено с  $Q_{\Pi 2}$ , т.к.  $Q_{\Pi 1} < Q_{\Pi 2}$ . В результате получаем ARC-цепь, реализующую заданную H(p) (рис. 10.44).



Рис. 10.44. ARC-цепь, реализующая заданную передаточную функцию

Решить поставленную задачу можно было бы другим способом, если представить H(p) в виде произведения двух других функций второго порядка:

$$H(p) = H_1(p) \cdot H_2(p) = \frac{b_0}{(p^2 + a_{11}p + a_{01})} \cdot \frac{p^2}{(p^2 + a_{12}p + a_{02})}$$

полюса

сомножителя.

Рассчитаем

добротности полюса каждого 
$$Q_{\pi 1} = \frac{\sqrt{a_{01}}}{a_{11}}; \quad Q_{\pi 2} = \frac{\sqrt{a_{02}}}{a_{12}}.$$

Предположим, что значения коэффициентов H(p) таковы, что

$$Q_{\pi 1} \ge 5; \ Q_{\pi 2} < 5; \ Q_{\pi 2} < Q_{\pi 1}.$$

Функций  $H_1(p)$  может быть реализована ARC-звеном рис. 10.36. Передаточная функция НЧ-звена:

$$H_1(p) = \frac{\frac{1}{C^2 R_4 R_1}}{p^2 + \frac{1}{C R_2} p + \frac{1}{C^2 R_3 R_1}}.$$

Нам необходимо реализовать:

$$H_1(p) = \frac{b_0}{p^2 + a_{11}p + a_{01}}$$

Приравниваем коэффициенты:

$$\begin{cases} \frac{1}{CR_2} = a_{11}; \\ \frac{1}{C^2 R_3 R_1} = a_{01}. \end{cases}$$

Получается 4 неизвестных и 2 уравнения. Можно задать значения C и  $R_3$ . Остается 2 неизвестных и 2 уравнения. Из этих уравнений получаем значения неизвестных параметров:  $R_1$  и  $R_2$ . Для реализации выбранного звена также необходимо задать значения  $R_0$  и  $R_4$ .

Аналогично поступаем с

$$H_2(p) = \frac{p^2}{p^2 + a_{12}p + a_{02}}$$

В качестве схемы выбираем ARC-звено рис. 10.41. Передаточная функция ФВЧ-звена:

$$H(p) = \frac{\frac{C_{11}}{C_{11} + C_{12}} p^2}{p^2 + \frac{1}{C_{13}R_2} \cdot \frac{C_{11} + C_{12} + C_{13}}{C_{11} + C_{12}} p + \frac{1}{(C_{11} + C_{12})C_{13}} \cdot \frac{1}{R_{11}R_{12}}}.$$

Составляем систему уравнений, приравнивая коэффициенты, находим параметры элементов звена:

$$\begin{cases} \frac{1}{C_{13}R_2} \cdot \frac{C_{11} + C_{12} + C_{13}}{C_{11} + C_{12}} = a_{12}; \\ \frac{1}{(C_{11} + C_{12})C_{13}} \cdot \frac{1}{R_{11}R_{12}} = a_{02}. \end{cases}$$

Получается 5 неизвестных и 2 уравнения. Можно задать значения  $C_{11}, C_{12}, C_{13}$ . Остается 2 неизвестных и 2 уравнения. Из этих уравнений получаем значения неизвестных параметров:  $R_{11}$  и  $R_{12}$ .

Далее каскадно соединяем звенья, при этом на первое место ставим звено с  $Q_{n2}$ , а на второе – звено с  $Q_{n1}$ , т.к.  $Q_{n2} < Q_{n1}$ . В результате получаем ARC-цепь, реализующую заданную H(p) (рис. 10.45).



Рис. 10.45. ARC-цепь, реализующая заданную передаточную функцию

# Контрольные вопросы

- 1. Как классифицируют электрические фильтры в зависимости от взаимного расположения полос пропускания и задерживания?
- 2. Как определяется ослабление фильтра при двусторонней и односторонней нагрузках? Что такое рабочее ослабление?
- 3. Что вам известно о расположении полюсов и нулей передаточных функций устойчивых цепей?
- 4. Как найти передаточную функцию лестничной электрической цепи?
- 5. Дайте определение полинома Гурвица и перечислите его основные свойства.
- 6. Какими основными свойствами обладают амплитудно-квадратичные характеристики? Как определить передаточную функцию цепи по ее AKX?
- 7. Какие методы аппроксимации используются в типовых задачах синтеза линейных электрических цепей?
- 8. Запишите выражения для АКХ и ослабления полиномиального ФНЧ с характеристиками Баттерворта, постройте график ослабления.
- Запишите выражения для АКХ и ослабления полиномиального ФНЧ с равноволновыми характеристиками. Как выглядит график ослабления фильтров разного порядка? Перечислите основные свойства полиномов Чебышева.
- 10.Какой вид имеют лестничные LC-схемы полиномиальных ФНЧ? Как определить параметры элементов по заданной передаточной функции?
- 11.В чем заключается метод частотного преобразования? Как по передаточной функции ФПНЧ найти передаточную функцию ФВЧ, ПФ и РФ?
- 12.Как преобразовать схему ФПНЧ в схему ФВЧ, ПФ, РФ? Как преобразовать график ослабления ФПНЧ в графики ослабления перечисленных фильтров?

- 13.В чем заключаются преимущества и недостатки ARC-фильтров в сравнении с LC-фильтрами?
- 14.Почему ARC-фильтры реализуют путем каскадно-развязанного соединения звеньев низкого порядка (обычно не выше второго)?
- 15.В чем состоит метод уравнивания коэффициентов? 16.Как найти передаточную функцию ARC-звена, построенного по методу АВТ?
- 17.Как реализовать передаточную функцию ARC-звеном, построенным по методу АВТ?