
Distributed Hash Tables (DHTs):
Chord & Pastry

Roman Dunaytsev

The Bonch-Bruevich Saint-Petersburg
State University of Telecommunications

roman.dunaytsev@spbgut.ru

Lecture № 3



Outline

1 Introduction

2 Chord

3 Pastry

4 Summary

5 Learning outcomes

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 2 / 29



Introduction

In P2P systems, cooperative peers self-organize themselves into
overlay networks and relay/store data for each other

The major challenge is how to achieve efficient resource search in
these large-scale distributed-storage networks

Overlay 
network

Physical 
network

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 3 / 29



Introduction (cont’d)

2 types of overlays :

Unstructured
Structured

Unstructured systems – do not impose any structure on the
overlay networks or loosely structured

E.g., Napster, Gnutella, Freenet, FastTrack, eDonkey2000, BitTorrent
Usually resilient to peer dynamics
Support complex search based on file metadata
Low search efficiency, especially for unpopular files

Structured systems – impose particular structures on the overlay
networks

E.g., Distributed Hash Tables (DHTs)
The topology of the peer network is tightly controlled
Any file can be located in a small number of overlay hops

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 4 / 29



Introduction (cont’d)

Search process in unstructured P2P systems

A

B

A B

CD

A

B

A

CB D

1. Query

2. Response

1. Query

2. Response

1a. Query

5. G
et data

1. Query

2. Response

SuperpeersPeer Peer Tracker

ServerPeer Peer Peer

Napster Gnutella v0.4

FastTrack / Gnutella v0.6 BitTorrent

Swarm

3. Get data

3. G
et data

3
. G

e
t 

d
a

ta

3
. G

e
t 

d
a

ta

1
b

. 

Q
u

e
ry

2
. 

Q
u

e
ry

3
. 

R
e

s
p

o
n

s
e

3
. G

e
t 

d
a

ta

4. Response

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 5 / 29



Introduction (cont’d)

Basic features of structured P2P overlays:

Structure – to accommodate participating nodes and data in the
overlay
Routing algorithm – to locate nodes in the overlay and insert/retrieve
data to/from them
Join/leave mechanisms – to enable self-organization and fault tolerance

Structures (aka geometries)

Structured overlays use a number of different geometries (rings, trees,
hypercubes, tori, . . . )
The primary goal is to enable the deterministic lookup (i.e., access
guarantees with certain time bounds)
The performance is directly related to how nodes are arranged and how
the overlay structure is maintained when nodes arrive and leave

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 6 / 29



Introduction (cont’d)

Routing algorithms

They define how a target node is located in the overlay network

DHT-based routing algorithms work as follows:
1 The node ID space is formed by applying a hashing function to node

IDs (e.g., MAC/IP addresses)
2 A commonly used hashing function is SHA-1 (Secure Hash Algorithm

version 1)
3 IDs for data items are created by applying the same hashing function

to them (e.g., filenames or keywords)
4 Thus, the node IDs and data IDs fall into the same address space
5 Data items are typically stored on the closest node with the node ID

greater than or equal to the data ID
6 If the node with the closest ID does not store the data item, then it is

not available in the network
7 Using this approach any existing data item can be found by any node

in the overlay

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 7 / 29



Introduction (cont’d)

Join/leave mechanisms

Usually, P2P systems are highly dynamic in nature (aka node churn)
Hence, some mechanisms are needed to allow nodes to join or leave the
system at any time with minimal impact to the functioning of the
overlay

Nodes join as follows:
1 Get a unique ID for the node
2 Position itself into the overlay structure based on the node ID and the

geometry
3 Update the routing tables (both the joining node and all the affected

nodes)

Bootstrapping:
As a rule, a new node contacts a bootstrapping server first and gets a
partial list of existing nodes
Another common approach is to let nascent nodes know in advance an
entry point into the network (e.g., a list of known nodes of the overlay
or a list of non-public bootstrapping servers)

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 8 / 29



Introduction (cont’d)

Nodes leave as follows:
1 When a node leaves or becomes unreachable, nodes that point to that

node are affected
2 Their routing table entries will be stale and have to be updated
3 A gracefully departing node notifies its neighbors about its departure
4 Its neighbors then propagate these changes if needed
5 However, a node may leave the system unexpectedly (e.g., due to

network failure or power outage)
6 Under these circumstances, the node will not notify its neighbors
7 Hence, the system must have some failure detection mechanism
8 Failure detection is usually handled by keep-alive messages or periodic

checking

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 9 / 29



Introduction (cont’d)

In P2P file sharing systems, DHT just helps peers to find each other

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 10 / 29



Chord

Chord was proposed in 2001 by Ion Stoica, Robert Morris, David
Karger, Frans Kaashoek, and Hari Balakrishnan, and was developed
at MIT

See ”Chord: a scalable peer-to-peer lookup service for Internet
applications”

Chord uses consistent hashing and SHA-1 as a hash function to assign
each node (by hashing the node’s IP address) and each data item an
m-bit ID, where m is a predefined system parameter

These IDs are arranged as a circle modulo 2m, from 0 to 2m − 1

Modulo arithmetic is a system of arithmetic for integers, where
numbers ”wrap around” after they reach a certain value –
the modulus

E.g., 7 + 7 + 7 ≡ 9 (mod 12)⇒ 9:00 PM or 21:00 (mod 24)

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 11 / 29



Chord (cont’d)

Data items are mapped to nodes whose ID is greater than or equal to
the ID of the data item (aka a key)

Due to consistent hashing, all nodes receive roughly the same number
of keys and can join/leave the system with minimal disruption

Thus, a node in a Chord circle with clockwise increasing IDs is
responsible for all keys that precede it counter-clockwise

Overlay 
network

Physical 
network

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 12 / 29



Chord (cont’d)

Each node has a successor and a predecessor

Since nodes may disappear from the network, each node records
several nodes preceding it and following it

Each node also maintains information about (at most) m other
neighbors, called fingers, in a finger table

The i-th entry, i = 1, 2, . . . ,m, in the finger table of node N points to
the node whose ID is the smallest value bigger than or equal to
N + 2i−1 (mod 2m) in the clock wise direction

N2 N4 N7

N12

N20

N43

N58 N60

N30N36N38
N25

K61, K62, K63, K0, K1, K2
i Target Successor

1 2 + 2
0
 = 3 N4

2 2 + 2
1
 = 4 N4

3 2 + 2
2
 = 6 N7

4 2 + 2
3
 = 10 N12

5 2 + 2
4
 = 18 N20

6 2 + 2
5
 = 34 N36

m = 6 (6-bit IDs)
Keys (K) = [0, 1, …, 63]
Nodes (N) = [0, 1, …, 63]

Finger table of node 2 (N2)

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 13 / 29



Chord (cont’d)

Chord routing algorithm:

The primary goal of the routing algorithm is to quickly locate the
node responsible for a particular key

Chord routing works as follows:
1 A key lookup query is routed along the ID circle
2 Upon receiving a lookup query, the node first checks if the lookup key

ID falls between this node ID + 1 and its successor ID
3 If it does, then the node returns the successor ID as the destination

node and terminates the lookup service
4 Otherwise, the node relays the lookup query to the node in its finger

table with ID closest to, but preceding, the lookup key ID
5 The relaying process proceeds iteratively until the destination node is

found

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 14 / 29



Chord (cont’d)

m = 6 (i.e., modulo 2m = 64); 12 nodes; node 2 looks up key 45
(1) N36 is the closest to key 45; (2) N43 immediately precedes key 45;
(3) N58 is the first successor of key 45 on the circle

N2 N4 N7

N12

N20

N43

N58 N60

N30N36N38
N25

Target Suc.

2 + 1 = 3 N4

2 + 2 = 4 N4

2 + 4 = 6 N7

2 + 8 = 10 N12

2 + 16 = 18 N20

2 + 32 = 34 N36

(1) Finger table of N2

(1)

Target Suc.

36 + 1 = 37 N38

36 + 2 = 38 N38

36 + 4 = 40 N43

36 + 8 = 44 N58

36 + 16 = 52 N58

36 + 32 ≡ 4 N4

(2) Finger table of N36

Target Suc.

43 + 1 = 44 N58

43 + 2 = 45 N58

43 + 4 = 47 N58

43 + 8 = 51 N58

43 + 16 = 59 N60

43 + 32 ≡ 11 N12

(3) Finger table of N43

(2)

(3)

45

K44 – K58

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 15 / 29



Chord (cont’d)

m = 6 (i.e., modulo 2m = 64); 12 nodes; node 12 looks up key 45
(1) N30 immediately precedes key 45; (2) N38 immediately precedes
key 45; (3) N43 immediately precedes key 45; (4) N58 is the first
successor of key 45 on the circle

N2 N4 N7

N12

N20

N43

N58 N60

N30N36N38
N25

Target Suc.

12 + 1 = 13 N20

12 + 2 = 14 N20

12 + 4 = 16 N20

12 + 8 = 20 N20

12 + 16 = 28 N30

12 + 32 = 44 N58

(1) Table of N12

(1)

Target Suc.

30 + 1 = 31 N36

30 + 2 = 32 N36

30 + 4 = 34 N36

30 + 8 = 38 N38

30 + 16 = 46 N58

30 + 32 = 62 N2

(2) Table of N30

Target Suc.

38 + 1 = 39 N43

38 + 2 = 40 N43

38 + 4 = 42 N43

38 + 8 = 46 N58

38 + 16 = 54 N58

38 + 32 ≡ 6 N7

(3) Table of N38

(2)

45

Target Suc.

43 + 1 = 44 N58

43 + 2 = 45 N58

43 + 4 = 47 N58

43 + 8 = 51 N58

43 + 16 = 59 N60

43 + 32 ≡ 11 N12

(4) Table of N43

(3)

(4)

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 16 / 29



Chord (cont’d)

As a finger table stores at most m entries, its size is independent of
the number of keys or nodes in the network

The Chord routing algorithm exploits the information stored in the
finger table of each node

A node forwards queries for a key K to the closest predecessor of K on
the ID circle according to its finger table
For distant keys K , queries are routed over large distances on the ID
circle in a single hop
The closer the query gets to K , the more accurate the routing
information of the intermediate nodes on the location of K becomes

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 17 / 29



Chord (cont’d)

It has been shown that the number of routing steps in Chord is at the

order of O(logN) , where N is the total number of nodes

According to the Change of Base Theorem, when we talk about
logarithmic growth, the base of the logarithm is not important:

loga N = C ∗ logb N, C = loga b, a, b > 0, a, b 6= 1

Queries on an unstructured P2P network tend to have lookup
complexity of the order of O(N)

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 18 / 29



Chord (cont’d)

Chord join/leave mechanisms:

Nodes join as follows:
1 The newly arrived node first uses consistent hashing to generate its ID
2 It then contacts the bootstrapping server to lookup the successor ID
3 This successor node becomes new node’s successor node
4 The joining node is inserted into the overlay and takes on part of the

successor node’s load
5 The new node uses a stabilization protocol to verify its finger table

To validate and update successor pointers as nodes join and leave the
system, the stabilization protocol is executed periodically at the
background of individual nodes

When a node detects a failure of a finger during a lookup, it chooses
the next best preceding node from its finger table

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 19 / 29



Pastry

Pastry was proposed in 2001 by Antony Rowstron and Peter
Druschel, and was developed at Microsoft Research, Ltd., Rice
University, Purdue University, and University of Washington

See ”Pastry: scalable, decentralized object location and routing for
large-scale peer-to-peer systems”
The Pastry project: www.freepastry.org

Similar to Chord, its main goal is to create a completely
decentralized, structured P2P overlay in which objects can be
efficiently located and lookup queries efficiently routed

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 20 / 29

http://www.freepastry.org


Pastry (cont’d)

In Pastry, data items and nodes have unique 128-bit IDs, ranging
from 0 to 2128 − 1

For the purposes of routing, these IDs are treated of as sequences of
digits in base 2b

Typically, b = 4, so these digits are hexadecimal (HEX)

These IDs are arranged as a circle modulo 2128

The node IDs are randomly generated at node join, and uniformly
distributed in the ID space

Instead of organizing the ID space as a Chord-like circle, the Pastry
routing is based on numeric closeness of IDs

When forwarding a message to a destination key K , a node will choose
the node in its routing table with the longest prefix match

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 21 / 29



Pastry (cont’d)

Each node in Pastry maintains 3 tables:

Routing table
Leaf set
Neighborhood set

Routing table contains dlog2b Ne rows with 2b columns, where N is
the total number of Pastry nodes

The entries in row j refer to a node whose ID shares the present node
ID only in the first j digits
Similar to Chord’s finger table, it stores links into the ID space

Leaf set is a set of l nodes with numerically closest IDs (1/2 larger
and 1/2 smaller than the ID of the current node)

Like Chord’s successor list

Neighborhood set maintains information about nodes that are
close together in terms of network locality

E.g., number of IP hops, Round-Trip Time (RTT) values

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 22 / 29



Pastry (cont’d)

Pastry routing algorithm:

The primary goal of the routing algorithm is to quickly locate the
node responsible for a particular key

Pastry routing works as follows:
1 Given a message with its key, the node first checks its leaf set
2 If there is a node whose ID is closest to the key, the message is

forwarded directly to the node
3 If the key is not covered by the leaf set, then the node checks the

routing table and the message is forwarded to a node that shares a
common prefix with the key by at least one more digit

4 This way, with log2b N steps, the message can reach its destination
node

Thus, the number of routing steps in Pastry is at the order of
O(logN)

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 23 / 29



Pastry (cont’d)

b = 4; base 2b = 16; N = 10, 000 nodes; dlog16 10, 000e = 4 rows;
node 63AB looks up key EB3E

From its routing table, node 63AB gets node E123, which shares
1-digit common prefix with the key
Node E123 checks its routing table and gets node EB17, which shares
2-digit common prefix with the key
Node EB17 then checks its routing table and gets node EB39, which
shares 3-digit common prefix with the key
Finally, node EB39 checks its leaf set and forwards the message directly
to node EB3E

63AB

(1) (2)

(3)

E123

EB17

EB39
EB3E

2
128

 – 10

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 24 / 29



Pastry (cont’d)

63AB → E123 → EB17 → EB39 → EB3E

”. . . ” represents arbitrary suffixes in base 16
IP address and port number associated with each entry are not shown

0...

(1) Routing table of node 63AB

60...

630...

1...

61...

631...

2...

62...

632...

3...

633...

4...

64...

634...

5...

65...

635...

66...

636...

7...

67...

637...

8...

68...

638...

9...

69...

639...

A...

6A...

B...

6B...

63B..

C...

6C...

63C..

D...

6D...

63D..

E...

6E...

63E..

F...

6F...

63F..

(2) Routing table of node E… (e.g., E123)

0...

E0...

E10..

1...

E11..

2...

E2...

3...

E3...

E13..

4...

E4...

E14..

5...

E5...

E15..

6...

E6...

E16..

7...

E7...

E17..

8...

E8...

E18..

9...

E9...

E19..

A...

EA...

E1A..

B...

EB...

E1B..

C...

EC...

E1C..

D...

ED...

E1D..

EE...

E1E..

F...

EF...

E1F..

(3) Routing table of node EB… (e.g., EB17)

0...

E0...

EB0..

1...

E1...

2...

E2...

EB2..

3...

E3...

EB3..

4...

E4...

EB4..

5...

E5...

EB5..

6...

E6...

EB6..

7...

E7...

EB7..

8...

E8...

EB8..

9...

E9...

EB9..

A...

EA...

EBA..

B...

EBB..

C...

EC...

EBC..

D...

ED...

EBD..

EE...

EBE..

F...

EF...

EBF..

(4) Leaf set of node EB3… (e.g., EB39)

EB30 EB31 EB32 EB33 EB34 EB35 EB36 EB37 EB38 EB3A EB3B EB3C EB3D EB3E EB3F

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 25 / 29



Pastry (cont’d)

Pastry join/leave mechanisms:

Nodes join as follows:
1 The joining node must know of at least another node already in the

system
2 It generates an ID for itself, and sends a join request to the known

node
3 The request will be routed to the node whose ID is numerically closest

to the new node ID
4 All the nodes encountered on route to the destination will send their

state tables (routing table, leaf set, and neighborhood set) to the new
node

5 The new node will initialize its own state tables, and it will inform
appropriate nodes of its presence

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 26 / 29



Pastry (cont’d)

Nodes leave/failure as follows:
1 Nodes in Pastry may fail or depart without any notice
2 Routing table maintenance is handled by periodically exchanging

keep-alive messages among neighboring nodes
3 If a node is unresponsive for a certain period, it is presumed failed
4 All members of the failed node’s leaf set are then notified and they

update their leaf sets

With concurrent node failures, eventual message delivery is
guaranteed unless l/2 or more nodes with adjacent IDs fail
simultaneously

Parameter l is an even integer with typical value of 16

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 27 / 29



Summary

Structured overlays use the concept of consistent hashing and are
able to locate objects with a cost that is at the order of O(logN),
where N is the total number of nodes

The number of DHT algorithms is huge and continues to grow

Most variants of DHT-based systems try to optimize:
Data lookup cost
Routing table size
Maintenance cost
Fault tolerance

Chord Pastry

Hybrid: circle + tree (similar 
to the Plaxton’s algorithm) 

CircleStructure

Matching key and prefix in 
node ID

Matching key and node IDRouting algorithm

O(log N), where N is the 
number of nodes

O(log N), where N is the 
number of nodes

Routing performance

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 28 / 29



Learning Outcomes

Things to know:

Fundamentals of DHT algorithms
How Chord works
How Pastry works

Roman Dunaytsev (SUT) P2P Networks Lecture № 3 29 / 29


	Introduction
	Chord
	Pastry
	Summary
	Learning outcomes

