
Evolution of P2P File Sharing Systems

Roman Dunaytsev

The Bonch-Bruevich Saint-Petersburg
State University of Telecommunications

roman.dunaytsev@spbgut.ru

Lecture № 2



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 2 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 3 / 81



ARPANET

Client/server vs. pure P2P systems

Client/server Pure P2P

Participants Clients and servers Equal peers

Networking software Different for clients and 
servers

Similar for all

Active role (requester) Client Any participant

Passive role (provider) Server Any participant

Interaction Clients with servers Arbitrary

Service/content/resource 
provider

Servers Active participants

Data flows (in theory) Asymmetric Symmetric

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 4 / 81



ARPANET (cont’d)

The goal of the original ARPANET was to share computing
resources around the USA
Initially, the ARPANET consisted of 4 hosts which were already
independent computing sites with equal status:

Stanford Research Institute (SRI)
University of Utah (UTAH)
University of California, Los Angeles (UCLA)
University of California, Santa Barbara (UCSB)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 5 / 81



ARPANET (cont’d)

FTP and telnet – the early Internet applications – were themselves
client/server applications

But the usage patterns as a whole were symmetric

Every host could connect to any other host, and in the early days of
minicomputers and mainframes servers usually acted as clients as well

Thus, the Internet started as a P2P system

In subsequent years, the Internet has become more and more restricted
to client/server-type applications

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 6 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 7 / 81



Usenet

Usenet (USEr + NETwork) – a worldwide system for distributing
user-submitted messages on various subjects

In Usenet, messages are posted to newsgroups , where any user can
access the messages to read and respond to them

Usenet was developed by Tom Truscott and Jim Ellis at the University
of North Carolina and Duke University in 1979

The initial goal was to create a system, where students could use Unix
to write and read messages, and to obtain both technical help and
maintain social contacts

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 8 / 81



Usenet (cont’d)

Key difference from Bulletin Board Systems and Web forums –
there is no central server, nor central system owner

Key difference from e-mail – Usenet is oriented to public
distribution, rather than private delivery to an individual user

On August 6, 1991, Tim Berners-Lee posted on Usenet a short
summary of the WWW project

groups.google.com/group/alt.hypertext/msg/395f282a67a1916c

On August 25, 1991, Linus Torvalds announced on Usenet that he is
doing a free operating system

groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b

Software piracy has boomed with the rise of the Internet and,
particularly, with Usenet

E.g., alt.binaries.warez.ibm-pc, alt.binaries.warez.0-day.games, . . .
0-day: www.prelist.ws/index.php?section=0DAY (via Usenet.nl)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 9 / 81

http://groups.google.com/group/alt.hypertext/msg/395f282a67a1916c
http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b
http://www.prelist.ws/index.php?section=0DAY
http://en.usenet.nl


Usenet (cont’d)

Originally, Usenet was based on the
Unix-to-Unix Copy Protocol (UUCP)

UUCP is a protocol suite for point-to-point communication between
Unix systems, typically using dial-up modems
Using UUCP, one Unix machine was able to automatically dial another,
exchange files with it over a direct computer-to-computer telephone
link, and disconnect

Nowadays, Usenet relies on the
Network News Transport Protocol (NNTP)

NNTP is an application layer protocol used for reading and posting
Usenet articles (aka Netnews, news, or posts), as well as
transferring them among servers
NNTP is defined in RFC 3977

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 10 / 81



Usenet (cont’d)

Usenet works as follows:
1 Article composition – a user creates a Usenet article
2 Posting – the user submits the article to a local Usenet server
3 Propagation – the article is transmitted from the local Usenet server

to other servers, until all Usenet servers that want it have a copy of it
4 Article access – now other members of the newsgroup can access and

read the article

Local 
server

Local 
server

Usenet backbone peers

Poster Reader

Client Client

P2P
client / server 

interaction
client / server 

interaction
client / server 

interaction
client / server 

interaction

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 11 / 81



Usenet (cont’d)

Originally, Usenet articles were carried over the P2P network known as
UUCPnet

Over time, it became clear that some nodes were better connected
than others and these nodes went on to form the Usenet backbone

Now Usenet backbone servers collect Usenet articles from local servers
and forward them to other backbone servers in a P2P fashion

But Usenet itself is a typical client/server application
Usenet client software (aka newsreaders): Usenet Explorer, Xnews,
Windows Live Mail, Mozilla Thunderbird, . . .
Usenet server software: DNews (netwinsite.com/dnews.htm), . . .

The history of Usenet shows that client/server and P2P systems
are not mutually exclusive

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 12 / 81

http://netwinsite.com/dnews.htm


Usenet (cont’d)

Google Groups is a free service from Google
http://groups.google.com

Google provides access to 2 kinds of groups:
Regular Usenet groups – decentralized and not hosted by any single
organization
Regular Google groups – hosted by Google and can be accessed using
a Web browser or by subscribing to receive e-mails, but cannot be
accessed using Usenet newsreaders

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 13 / 81

http://groups.google.com


Usenet (cont’d)

Modern Usenet is very large, with 1000s of servers and terabytes of
articles being transferred every day

ghacks.net/2011/01/26/usenet-traffic-growth-to-almost-9tb-per-day/

But much of this traffic increase reflects not an increase in discrete
users or newsgroup discussions, but instead the combination of
massive automated spamming and an increase in the use of warez
newsgroups in which large files are often posted publicly

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 14 / 81

http://www.ghacks.net/2011/01/26/usenet-traffic-growth-to-almost-9tb-per-day/


Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 15 / 81



WWW

In the mid-1990s, a new wave of ordinary people, not computer geeks,
began to use the Internet as a way to exchange e-mails, access Web
pages, etc.

The WWW is based on the client/server model and uses HTTP

The equal sharing of information over the Internet quickly shifted into
the downstream paradigm, like TV and newspapers

The change of the Internet to a mass media system resulted in
asymmetric bandwidth of network paths

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 16 / 81



WWW (cont’d)

Bandwidth asymmetry – the bandwidth for transmission from the
server to the client is much larger than that in the opposite direction
E.g., ADSL2+ (ITU G.992.5, 2003):

Downstream rate = 24 Mbit/s
Upstream rate = 1 Mbit/s

Such asymmetry fits well the downstream paradigm but it places
severe limitations on the use of the uplink

The presence of bidirectional traffic can degrade TCP performance
due to the adverse interaction between data packets of upstream flows
and feedback messages (TCP ACKs) of downstream data flows

For more information, see RFC 3449

Client

Downlink

Uplink
Server

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 17 / 81



WWW (cont’d)

In the early days of the Internet, any host that could access the
Internet could also be accessed by other hosts

As the Internet matured there came a need to secure the network and
to protect individual hosts from unlimited access

Then network administrators turned to firewalls as a tool to control
access to their networks and hosts

Early Internet These days

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 18 / 81



WWW (cont’d)

With the rise of dialup users connecting to the Internet via the PSTN,
the old practice of giving every host a fixed IP address became
impractical

Dynamic IP address assignment using DHCP is now the norm for
many hosts on the Internet

As a result, many hosts on the Internet are not easily reachable

Another trend is to use Network Address Translation (NAT)
NAT allows the use of a pool of private nonroutable IP addresses
within a local network
As a result, NAT combines the problems of firewalls and dynamic IP
addresses: not only the host address is dynamic, it is not even visible!

Serious challenges and obstacles to P2P applications are posed
by bandwidth asymmetry, firewalls, dynamic IP, and NAT

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 19 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 20 / 81



Napster

The Internet began to shift back to the P2P model with the
development, popularity, and attention given to P2P file sharing

Shawn Fanning, an 18-year-old student, created Napster in 1999

Napster allowed users to easily share mp3 files stored on their PCs

A year later, in 2000, Napster had 20 million users

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 21 / 81



Napster (cont’d)

Napster is an example of a hybrid P2P system:
Napster consisted of peers (Napster clients) and a central server
The search facility was implemented through the use of a central index,
which had a global view of the location of all shared files
The actual file transfer occurred between peers

qu
er

y 
/ r

ep
ly

Server

mp3 download
Peer

P2P

client / server 
interaction

Peer

query / reply

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 22 / 81



Napster (cont’d)

Napster worked as follows:
1 Users download a software package from Napster and install it
2 When a user logs on, the program sends a list of file names that the

user is sharing to the central server
3 The central server maintains an index of shared files of users who are

currently connected to Napster
4 This index is automatically updated when users log on and log off
5 When a user performs a search, it sends a query to the central server
6 The query reply contains the name of the files matching the query, plus

the IP addresses and port numbers of the peers hosting these files
7 The user can then decide from which peer to download the files
8 Finally, the file download is performed directly between the peers

Napster ran on top of TCP for client/server and P2P communications

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 23 / 81



Napster (cont’d)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 24 / 81



Napster (cont’d)

Napster also had a method to allow clients behind firewalls to share
their files:

In order to get a file, a downloader sends a DOWNLOAD_REQUEST
message to the server
The server answers with a DOWNLOAD_ACK message containing
more information about the file and the uploader (IP address, port
number, etc.)
If the port number is 0, it means that the uploader is behind a firewall
and can only push files outward
In this case, the downloader sends an
ALTERNATE_DOWNLOAD_REQUEST message to the server
The server sends an ALTERNATE_DOWNLOAD_ACK message to
the uploader
Once the uploader receives this message from the server, it should
establish a TCP connection to the downloader’s data port (given in the
ALTERNATE_DOWNLOAD_ACK message)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 25 / 81



Napster (cont’d)

Napster focused exclusively on mp3-encoded music files

When Napster was first introduced, there was only one client
implementation, which was called Napster

The service and software program were initially Windows-only, but in
2000 Black Hole Media wrote a Mac client called Macster
Macster was later used by Napster as the official Napster client for Mac

The Napster protocol is a closed-source (proprietary) protocol
I.e., no one knows for sure how file searching and transfer is done

It was only possible to build up a similar application to reveal the
Napster protocol through reverse engineering

Project OpenNap: http://opennap.sourceforge.net

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 26 / 81

http://opennap.sourceforge.net


Napster (cont’d)

The reason for Napster’s failure was not technical, but legal:
As the Napster network grew to a size of millions of users, the
Recording Industry Association of America (RIAA) started
pressuring Napster to ban the exchange of copyrighted material or to
shut down the network
Napster deployed various filters to reduce the number of files available
for exchange
In 2001, Napster was forced to shut down due to the inefficiency of its
filtering

In 2002, Napster’s brand and logos were purchased by Roxio, which
used them to rebrand the online music service as Napster 2.0

In 2008, Napster was purchased by Best Buy

In 2011, Napster merged with Rhapsody

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 27 / 81



Napster (cont’d)

Shortcomings of Napster:
Reliability – the reliance on a central index server made the system
vulnerable to DoS attacks and legal prosecution
Security – the security of the system was weak, since the authenticity
of mp3 files was based on file names only and, therefore, could not be
verified or guaranteed

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 28 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 29 / 81



Gnutella

Gnutella was developed by Justin Frankel and Tom Pepper,
employees of Nullsoft, in 2000

The idea was to design a P2P system without a central point of control
This way, the network would be completely decentralized and
autonomous, and would be much more robust and harder to shut down

The authors used the open-source model and released the source
code and protocol specification under the General Public License
(GPL) to allow the system to evolve
In contrast to Napster, Gnutella has more than 20 different clients
from different vendors
Moreover, Gnutella enables sharing any type of files, not just mp3

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 30 / 81



Gnutella (cont’d)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 31 / 81



Gnutella (cont’d)

The idea of Gnutella is similar to the search strategy employed by
humans:

If you want to get a particular thing, you can ask one of your friends
nearby
If he does not have the thing, he can ask his friends
If everyone is eager to help, this request will be conveyed from one
person to another until it reaches someone who has it
The information about that person will be routed to you according to
the original path

This search strategy is known as query flooding

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 32 / 81



Gnutella (cont’d)

Gnutella v0.4 employs the following messages (aka descriptors):

Ping – used to actively discover peers (aka servents) on the network
A peer receiving this descriptor is expected to respond with a Pong

Pong – the response to a Ping descriptor
This descriptor includes the IP address and port number of the peer
and the number of files and kilobytes of data that the peer is sharing
on the network

Query – used to search files on the network
A peer receiving a Query descriptor will respond with a QueryHit if a
match is found against its local data set

QueryHit – the response to a Query descriptor
This descriptor provides the recipient with enough information to
retrieve the data matching the corresponding Query

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 33 / 81



Gnutella (cont’d)

Push – a peer may send a Push descriptor if it receives a QueryHit
descriptor from a peer that does not support incoming connections

E.g., the peer may be behind a firewall that does not permit incoming
connections to its Gnutella port
Then the peer attempting the file download may request that the peer
sharing the file ’push’ the file instead
Thus, a peer can request a file push by routing a Push descriptor back
to the peer that sent the QueryHit descriptor describing the target file
The peer that is the target of the Push descriptor should, upon receipt
of the Push descriptor, attempt to establish a new TCP connection to
the requesting peer

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 34 / 81



Gnutella (cont’d)

The Gnutella protocol just provides search functionality

The file download protocol is HTTP

PingPing

P
in

g
P

in
g

Pong

Ping / Pong routing Query / QueryHit routing Push routing

Query

Q
u

e
ry

Q
u

e
ry

Hit

H
it

H
it

Push

HTTP 
GET

HTTP 
POST

P
u

s
h

P
u

s
h

downloaddownload

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 35 / 81



Gnutella (cont’d)

Gnutella v0.4 worked as follows:
1 A given peer, upon launching, must connect to other peers via a list

(generated by a variety of means) of available other peers
2 This new peer pings its known peers and active peers respond with

information about the files they are sharing
3 A query can then be sent to the other peers and propagated as needed

until the query’s condition is met and a reply is returned or the
descriptor is destroyed after a preset Time To Live (TTL)

4 Each peer will decrement the TTL before passing it to another peer
5 When the TTL reaches 0, the descriptor will no longer be forwarded
6 Once the file is found, a simple HTTP GET request is initiated and the

file is on its way

Gnutella TTL specifies the number of times the descriptor will be
forwarded by Gnutella peers before it is removed from the network

Do not confuse with (although very similar) TTL in IP!

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 36 / 81



Gnutella (cont’d)

The original Gnutella used TTL = 7

TTL = 7

TTL = 6

TTL = 5

TTL = 4

TTL = 3

TTL = 2

TTL = 1

Query?

QueryHit!

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 37 / 81



Gnutella (cont’d)

Avoiding uncontrolled flooding:
All peers must memorize the unique 128-bit descriptor ID every time a
descriptor is delivered or originated; if this memorized descriptor is
received again, it will not be forwarded
Pong, QueryHit, and Push descriptors may only be sent along the same
path that carried the incoming Ping, Query, and QueryHit descriptors,
respectively
A peer forwards incoming Ping and Query descriptor to all of its
directly connected peers, except for the one that sent the incoming
Ping or Query
A peer decrements the TTL field, before it forwards a received
descriptor to any directly connected peer; if after decrementing, the
TTL field is found to be 0, the descriptor is discarded

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 38 / 81



Gnutella (cont’d)

Performance and scalability issues of Gnutella v0.4:

Peers with low-speed connections
These peers are usually scattered all over the network and they get
overloaded with queries until they become unavailable
This causes the network to be highly fragmented

Signaling traffic
Since every peer has to constantly ping other peers in order to obtain
their addresses, most of the network bandwidth is used to send
Ping/Pong descriptors
This prevents delivery of the other more important descriptors

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 39 / 81



Gnutella (cont’d)

TR-2001-26 ’Peer-to-Peer Architecture Case Study: Gnutella Network’
by M. Ripeanu
Gnutella v0.4 traffic (in bytes), for November 2000:

Query/QueryHit descriptors (user-generated traffic) ≈ 36%
Ping/Pong descriptors (overhead traffic) ≈ 55%
Push and non-standard descriptors ≈ 9%

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 40 / 81



Gnutella (cont’d)

Some engineering problems have been solved with the arrival of
Gnutella v0.6 in 2001

To avoid a huge amount of signaling traffic, Gnutella v0.6 introduced
a hierarchy by defining ultrapeers, which store the information about
the content available at the connected peers (aka leaves) together
with their IP addresses

TR-2001-26 ’Peer-to-Peer Architecture Case Study: Gnutella Network’
by M. Ripeanu

Gnutella v0.6 traffic (in bytes), for June 2001:
Query/QueryHit descriptors (user-generated traffic) ≈ 92%
Ping/Pong descriptors (overhead traffic) ≈ 8% (55% in v0.4)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 41 / 81



Gnutella (cont’d)

2 modes of Gnutella v0.6 peers :
Leaf
Ultrapeer

A peer can switch from one mode to the other, but it cannot be in
both modes at the same time

A leaf maintains only a single connection to an ultrapeer

An ultrapeer maintains many (∼ 100) leaf connections, as well as a
small (∼ 10) number of connections to other ultrapeers

When a leaf connects to an ultrapeer, it sends information about what
it is sharing

Ultrapeers use this information to only forward search queries to leaves
that could possibly have hits for them

E.g., a leaf that tells its ultrapeer it is sharing nothing will not get any
search descriptors at all

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 42 / 81



Gnutella (cont’d)

An ultrapeer network
http://home.comcast.net/∼gregory.bray/

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 43 / 81

http://home.comcast.net/~gregory.bray/


Gnutella (cont’d)

New features of Gnutella v0.6:
http://limewire.negatis.com/index.php?title=How_Gnutella_Works

Handshaking
A Gnutella connection begins with a handshake
It lets 2 programs advertise which advanced features they support
It also lets a Gnutella program disconnect from an incompatible peer

Pong caching
Ultrapeers keep a Pong cache
Leaves can ping their ultrapeers to get the Pongs they are currently
caching

Bye descriptor
An optional descriptor used to inform the remote host that the peer is
closing the connection

Dynamic querying

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 44 / 81

http://limewire.negatis.com/index.php?title=How_Gnutella_Works


Gnutella (cont’d)

Gnutella2 (aka G2 or Mike’s Protocol, MP) – a P2P protocol
developed mainly by Michael Stokes and released in 2002

G2 is a fork (offshoot) of the Gnutella protocol

G2 divides nodes into 2 groups:
Leaves – maintain 1 or 2 connections to hubs, while hubs accept 100s
of leaves and many connections to other hubs
Hubs – index what files their leaves have

In essence, Gnutella v0.6 and G2 are very similar

However, G2 is not supported by many Gnutella clients, while many
G2 clients can also connect to the Gnutella network

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 45 / 81



Gnutella (cont’d)

G2 network statistics
http://crawler.trillinux.org

Geographical distribution (for April 2019)
France: 60 hubs (48.0%); USA: 18 (14.4%); Canada: 6 (4.8%)

Network size (for April 2019)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 46 / 81

http://crawler.trillinux.org


Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 47 / 81



Freenet

The shutdown of the original Napster inspired the creation of pure
P2P systems such as Gnutella v0.4, which unlike Napster have
no central control

Freenet was proposed by Ian Clarke in 1999 as a distributed P2P file
sharing and data storage system

MSc thesis ’A Distributed Decentralized Information Storage and
Retrieval System’, University of Edinburgh, 1999

The Freenet protocol is open-source and has been under continuous
development since 2000

http://freenetproject.org

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 48 / 81

http://freenetproject.org


Freenet (cont’d)

Motivation – Governments around the world undertake efforts to
force ISPs to block access to content deemed unsuitable or subversive,
or to make them liable for such material hosted on their servers

Objective – Privacy for information producers/consumers/holders and
resistance to information censorship

Key features – Internet-wide information storage and anonymous
information publication and retrieval

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 49 / 81



Freenet (cont’d)

Freenet works as follows:
1 Each Freenet participant runs a node (peer) that provides the network

with some storage space
2 A file is inserted into the network with an associated key
3 After insertion is finished, the publisher is free to shut down his node,

since the file is stored in the network
4 During a file’s lifetime, it can migrate to or be replicated on other nodes
5 To retrieve a file, a user sends out a request message containing the key
6 When the request finds a node containing a copy of the file, the file is

returned through the search path

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 50 / 81



Freenet (cont’d)

Keys:
Each file that exists on Freenet has a key associated with it
Freenet keys are somewhat analogous to URLs on the WWW, except
unlike URLs, they do not point to the physical location of the data
Freenet uses semantic-free references to make the keys independent
of the file content; this is achieved by using hash-based keys
Keys are created using SHA (Secure Hash Algorithm)

In Freenet, shared files are encrypted and the encryption keys are
separated from the actual data

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 51 / 81



Freenet (cont’d)

Freenet basic messages:
Insert – allows a node to insert new data into the network; the
message includes the data file and the key
Request – a request for a certain file; the request contains the key of
the file
Reply – sent by the node that has the requested file; the actual file is
included in the reply message
Failed – denotes a failure to insert or locate a file; the message contains
the location of the node where the failure occurred and the reason

For more information, see FCPv2 (Freenet Client Protocol version 2):
https://wiki.freenetproject.org/FCPv2

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 52 / 81

https://wiki.freenetproject.org/FCPv2


Freenet (cont’d)

Bootstrapping in Freenet:
The process starts when a new node is announced in the network
A node new in Freenet needs to obtain an identifier (ID) for itself
This ID is a number that is derived through the announcement process
The announcement message contains the public key and an address of
some existing node
This announcement message is propagated by Freenet nodes
Every message in Freenet has a Time To Live (TTL) value, which
determines when the message propagation is stopped
When the message propagation stops, the nodes in the chain
collectively assign a new ID for the new node and some subspace of the
keyspace

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 53 / 81



Freenet (cont’d)

Inserting data:
For every piece of data, there is an associated key
Each node has a routing table, which with respect to the key, gives an
ordering of neighbors after their closeness as the destination of the
query
The route is then constructed by going from node to node and
selecting the most suitable neighbor
When this is not possible, the request backtracks and the route is
restarted from the previous node
The routing process is terminated either due to the request achieving
its purpose or the TTL field is found to be 0

A request is routed to the node that has the numerically closest
ID value to the key

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 54 / 81



Freenet (cont’d)

Retrieving data:
To search for a file in the network, matching a key, one establishes a
route for the key
At each step, the node checks its cache to see if a file associated with
that key is present
If such a file is found, the search terminates and the file is returned to
the previous node in the route, which relays it back towards the node
which initiated the request
Otherwise, the request is forwarded to the node with the closest
matching ID
This routing process is repeated until either the file is found or the
TTL field becomes 0

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 55 / 81



Freenet (cont’d)

Storing data:
During the relaying data at both insert and reply steps, nodes store the
data in their cache
Each node has 2 separate caches
One is a short-term cache where all data that the node transfers are
stored temporarily until they are pushed out by other data
The other is a long-term cache for storing only inserted data that
match the node ID

The network can be viewed as a large grid of caching proxy hosts,
each relaying and caching for one another

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 56 / 81



Freenet (cont’d)

The Freenet routing algorithm is
steepest ascent hill climbing with backtracking

Limited by a preset TTL value

Simple hill climbing – the first closer node is chosen

Steepest ascent hill climbing – all available nodes are compared
and the closest to the solution is chosen

Backtracking – when the search reaches a dead end (’plateau’), it
simply returns back to the previous node and tries alternative paths

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 57 / 81



Freenet (cont’d)

Key-based routing:
The request moves through the network from node to node, backing
out of a dead end (Step 3) and a loop (Step 7) before locating the
desired file

Requestor

A B C

F E D

Data holder

1 2

3

4
5

6

7

8 9

10

12

1
1

= request

= failed

= reply

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 58 / 81



Freenet (cont’d)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 59 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 60 / 81



FastTrack

FastTrack – a P2P protocol developed by Niklas Zennström and
Janus Friis in 2001

In 2003, FastTrack became very popular, having at one point more
users than that Napster on its peak

Similar to Gnutella v0.6, highly connected peers with sufficient
resources perform the search on behalf of more resource constraint
regular peers

FastTrack is proprietary software

In 2003, an open-source alternative, called OpenFT, was developed
by the giFT project through reverse engineering

http://gift.sourceforge.net

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 61 / 81

http://gift.sourceforge.net


FastTrack (cont’d)

In FastTrack, peers with the fastest Internet connections and the most
powerful computers become supernodes

A supernode maintains information about shared resource as well as
connections with other supernodes

When a peer performs search, it first searches for the closest
supernode, which returns immediate results (if any) or refers the
search to other supernodes (if needed)

However, supernodes themselves are just ordinary nodes that can join
or leave the network as they please

Therefore, the network is dynamic and always changing

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 62 / 81



FastTrack (cont’d)

In order to ensure the constant availability of the network, there exists
a need for dedicated peers that will monitor and keep track of the
network

Such peers are called bootstrapping nodes

Bootstrapping in FastTrack:
1 When a peer joins the network, it will first contact the bootstrapping

node
2 The bootstrapping node will then determine if that particular peer

qualifies to be a supernode
3 If it does, then it will be provided with some IP addresses of other

supernodes
4 Otherwise, the bootstrapping node will respond by providing the IP

address of one of the supernodes

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 63 / 81



FastTrack (cont’d)

The P2P model heavily depends on the concept of cooperation

’Free Riding on Gnutella’ by E. Adar, B. Huberman:
∼ 50% of all files for sharing are stored on only 1% of peers
∼ 70% of Gnutella users share no files (they are referred to as
freeloaders or free riders)

Some FastTrack clients, such as Kazaa, used a method known as
reputation , where the reputation of a certain user is reflected by its
participation level

If you have a high participation level, you will get priority over people
with a lower participation level when you download files
You can increase your participation level by uploading files
When you download files, your participation level will go down
When your participation level is low, downloading will be slower

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 64 / 81



FastTrack (cont’d)

Kazaa could be downloaded free of charge, but was full of adware

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 65 / 81



FastTrack (cont’d)

Sharing copyrighted content using the original FastTrack protocol:
Kazaa

Owned: Consumer Empowerment BV, Sharman Networks, Ltd.
Lifetime: 2001 - 2005 (reason - lawsuits from copyright owners)
Today: legal music download service, www.kazaa.com

Grokster
Owned: Grokster, Ltd.
Lifetime: 2001 - 2005 (reason - lawsuits from copyright owners)
Today: closed

iMesh
Owned: iMesh, Inc.
Lifetime: 2001 - 2005 (reason - lawsuits from copyright owners)
Today: legal music download service, www.imesh.com

Morpheus
Owned: StreamCast Networks, Inc.
Lifetime: 2001 - 2002 (reason - failed to pay FastTrack license fees)
Today: closed

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 66 / 81

http://www.kazaa.com
http://www.imesh.com


Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 67 / 81



eDonkey2000

How to increase the throughput of P2P networks?
With the size of the files being transferred, it might take a long time
before a new peer would be able to share a new file it is acquiring

Use swarming !
If a file can be downloaded in small pieces (aka chunks ) and then
immediately be shared by new peers, this bidirectional transfer reduces
the load on peers that have the complete file, thereby distributing not
only the file but its access as well

iMesh was the first company to introduce swarming
Nowadays, swarming is a must for P2P file sharing (eD2k, BitTorrent)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 68 / 81



eDonkey2000 (cont’d)

Without swarming, the upload bandwidth goes wasted until that peer
has the whole file

With swarming, all peers work bidirectionally with each other

But if the originator leaves the swarm too early, no one will be able to
use the file

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 69 / 81



eDonkey2000 (cont’d)

eDonkey (aka eDonkey2000 or eD2k) was developed by Jed
McCaleb (MetaMachine Inc.) and was first released in 2000

Currently, eD2k is not supported by any company and works by being
supported by its users alone

eD2k is a hybrid P2P file sharing network with client applications
running on PCs that are connected to a distributed network of
dedicated servers

The servers are slightly similar to the Gnutella v0.6 ultrapeers and
FastTrack supernodes
However, they do not share any files, only manage the information
distribution

In 2004, eD2k overtook FastTrack to become the most widely used
P2P file sharing system on the Internet

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 70 / 81



eDonkey2000 (cont’d)

eD2k works as follows:
1 A client connects to a server and stays connected
2 The client sends information about itself (username, IP address, port

number)
3 The client sends a list of the files it offers to the server
4 This information is added to the server’s database
5 A list of other known servers is transferred from the server to the client
6 Now the client can use the eD2k network to search and download files,

while itself shares its files by making them available for download by
other users

7 Between clients there is no communication except file downloads
8 Servers communicate with each other to keep their databases

up-to-date

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 71 / 81



eDonkey2000 (cont’d)

In eD2k, files are divided in chunks of 9500 KB plus a remainder
chunk, and a separate 128-bit MD4 checksum is computed for each

A transmission error corrupts only a chunk instead of the whole file
Valid downloaded chunks are available for sharing before the rest of the
file is downloaded, speeding up the distribution of large files throughout
the network

eD2k uses MD4 (Message Digest version 4) hashes to uniquely
identify a file independent of its filename

Hashing allows to treat files with identical content but different names
as same, and files with different contents but the same name as
different

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 72 / 81



eDonkey2000 (cont’d)

eD2k allows to search for content within the application

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 73 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 74 / 81



BitTorrent

BitTorrent was developed by Bram Cohen in 2001
Nowadays, it is maintained by Cohen’s company, BitTorrent Inc.

Unlike other P2P networks, BitTorrent does not offer the capability to
search for content within the application

Instead, users must have prior knowledge of tracker sites and know
where to look for the torrents they want to download

BitTorrent tracker – a server which assists in the communication
between peers using the BitTorrent protocol

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 75 / 81



BitTorrent (cont’d)

BitTorrent works as follows:
1 A user contacts a tracker to find and download a torrent file for the

data file he wants
2 Using this torrent file, the BitTorrent client software communicates

with the tracker to find other peers running BitTorrent that have the
complete file (aka seeds) and those with a portion of the file (i.e.,
peers that are in the process of downloading the file)

3 The tracker identifies the swarm, which is a set of connected peers
that have the complete file or a portion of it and are in the process of
sending/receiving it

4 The tracker helps the client software trade pieces of the file with other
peers in the swarm

5 BitTorrent uses the SHA-1 hash function to determine which pieces of
the file are good and which are bad

6 If the user continues to run the BitTorrent client software after the
download is complete, this peer becomes a seed

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 76 / 81



Outline

1 ARPANET

2 Usenet

3 World Wide Web

4 Napster

5 Gnutella

6 Freenet

7 FastTrack

8 eDonkey2000

9 BitTorrent

10 F2F

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 77 / 81



Friend-to-Friend

Friend-to-friend (F2F) file sharing – a new P2P paradigm that
provides users with explicit control over their privacy by letting them
determine how files are shared

Aka private P2P networks

Instead of sharing data indiscriminately, data shared with F2F can be
made public, can be shared with friends, shared with some friends but
not others, etc.

E.g., using IP addresses or digital signatures for authentication

A node in a F2F network requires more effort to set up and maintain,
because all peers must be connected manually

F2F software:
OneSwarm
Freenet
LimeWire
etc.

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 78 / 81



Friend-to-Friend (cont’d)

OneSwarm’s interface is browser-based

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 79 / 81



Friend-to-Friend (cont’d)

F2F in Freenet (aka Darknet)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 80 / 81



Friend-to-Friend (cont’d)

Roman Dunaytsev (SUT) P2P Networks Lecture № 2 81 / 81


	ARPANET
	Usenet
	World Wide Web
	Napster
	Gnutella
	Freenet
	FastTrack
	eDonkey2000
	BitTorrent
	F2F

