
12/6/2020

Television
Broadcasting
Systems
Practice

Darío Pérez-Calderón Rodríguez
BONCH-BRUEVICH SAINT - PETERSBURG STATE UNIVERSITY OF TELECOMMUNICATIONS

Practice Television Broadcasting Systems

1

Contents
1. Target ...2

2. Introduction ...2

2.1. File organization ...2

2.2. Base code explanation..2

3. Tasks to perform ..7

3.1. Cyclic prefix insertion: tx_cp.m ..7

3.2. Cyclic prefix removal: rx_cp.m..9

3.3. Fourier Transform: rx_fft.m ..9

3.4. Symbol demapping: rx_demap.m...10

3.5. Adding AWGN ..12

Practice Television Broadcasting Systems

2

1. Target
In this guide it will be carefully explained all the steps to follow in order to complete a very

simple model of an OFDM digital broadcasting system by using MATLAB.

2. Introduction
The teacher has provided the studentswith a set of M-files with a MATLAB code that emulates

the main parts of a basic OFDM transmitter (random data generation, bit to constellation

mapping, reverse Fourier transform). With the knowledge obtained during the course the

students must end the transmission chain (add the Cyclic Prefix to have a complete OFDM

signal in the base band) and perform the reception process (remove the Cyclic Prefix, apply the

Fourier transform, and perform the demapping process -QAM symbols to bits) and finally add

AWGN noise to see how it affects the system.

2.1. File organization
As a general way to work is important to have a well-organized file structure. That is why the

code provided by the teacher is divided in different folders, corresponding to the different

conceptual and physical parts in a system. This is, the transmitter (tx folder), the receiver (rx

folder), system configuration (config folder), propagation scenario (ch folder), and finally it is

necessary a wrapper for all the system (system folder). Inside of these folder it will be

allocated the files with code related to the topic its name makes reference to. In Fig. 1 the

folder structure can be observed.

Fig. 1. Sub-folders in simple_system

As a starting point it will be found in the tx folder the m files tx_datagen.m, tx_mapper.m, and

tx_ifft.m. The config folder will contain systemconfig.m. The system folder will contain the

system_run.m file. The rest of the folders will be empty.

2.2. Base code explanation
To better understand how everything works and to be able to add the remaining blocks to the

system a brief overview of all the provided code will be carried out, as it was during the

course.

The first point to review is the file that works as a wrapper for the rest of the code, this is

system_run.m.

Practice Television Broadcasting Systems

3

This file contains the code of a function that receives no input arguments and returns nothing.

Lines 9 to 12 act as import in Java language, they tell the MATLAB interpreter where to look for

the functions that are going to be used along the code.

After these lines the code only makes calls to the functions in the corresponding order to

emulate the transmission chain and some plots. First loads the system configuration in sysCfg

variable (line 14). Lines 16 and 17 print in the shell some data from the configuration, to check

which one we are using. The rest are function calls to the functions implementing the different

parts of the system, in this case the random data generation (line 20), mapping bits to QAM

symbols (line 21) and applying the reverse Fourier transform to get the temporal signal (line

24). Note that lines 23 and 25 must be commented (they were used in the classes to show how

the spectrum of the OFDM signal and a normal single carrier system looked like), if they are

not in your code you should do it.

The following file/function would be in order of appearance systemconfig.m

Practice Television Broadcasting Systems

4

This function only sets the values for the different fields of the structure SysCfg. The fields

correspond with the parameters needed for other functions of the system to work. The second

part just makes the shape of the constellation to be used.

To end with the para parameters related to the different configurations and the calculus of the

bits to be generated.

Practice Television Broadcasting Systems

5

The next function to be called is the one in tx_datagen.m, which target is to generate a

number of random data bits determined by SysCfg.NBITS.

This code uses the function randi (you can type “help randi” in MATLAB shell to get a full

description of the function) to generate a 1xSysCfg.NBITS vector and assign it to genData_bit.

This vector will take only 2 values (‘0’ and ‘1’). After generating this data bits the variable

genData_bit is saved in a folder in the path indicated in SysCfg.WorkFolder. This will be stored

as genData_bit.mat.

The next function is the one in tx_mapper.m that performs the mapping of the bits into the

selected QAM constellation.

Practice Television Broadcasting Systems

6

The first function in the file takes the vector SysCfg.MODMAT and groups the bits coming as

input in sets of the number of bits of each symbol (following the configuration). In line 11 the

string of input bits is transformed into a string of decimal numbers that go from 0 to

2bitsPerSymbol. These numbers will be used as index to get a value from modMatrix to assign to

the output symbol. These index will be stored (line 16) to check at the receiver if there were

mistakes during the transmission.

The last function in the base code provided is the one in tx_ifft.m, this function applies the

reverse Fourier transform to the input data.

Practice Television Broadcasting Systems

7

This function uses reshape (type “help reshape” in a matlab shell for a full description) to

change the dimensions of the input stream that will be a row vector with a length of

NFFT*NOFDMSYM (the length of the FFT used for each OFDM symbol and the number of

OFDM symbols generated respectively), see Fig. 2. To use in a more easy way the ifft function

it is recommendable to have every OFDM symbol to which it will be applied the IFFT in a

separate row or column.

OFDM Symbol 1 OFDM Symbol 2 OFDM Symbol 3

NFFT data NFFT data NFFT data

O
FD

M
 Sym

b
o

l 1

O
FD

M
 Sym

b
o

l 2

O
FD

M
 Sym

b
o

l 3

N
FFT d

ata

Number of
Symbols

Reshape(DataIn,nfft,[])

OFDM Symbol 1

OFDM Symbol 2

OFDM Symbol 3

NFFT data

N
u

m
b

er
 o

f
Sy

m
b

o
ls

.’

Fig. 2. Reshape explanation

After applying the IFFT to the data (by rows), again we use reshape to have a row vector at the

ouput, dataTime needs to be transposed because reshape always reads and writes by columns.

3. Tasks to perform
In this section it will be described every function of the ones to be accomplished. In general it

will be given a template and some of the lines to be coded will be deliberately left in blank, so

the student should be able to fill it with the explanations given.

3.1. Cyclic prefix insertion: tx_cp.m
As shown during the course (more concretely in the part related to the introduction to OFDM,

and also in DVB-T standard) the last part in an OFDM modulation is the cyclic prefix insertion.

This consists in copying the last data at the beginning of the OFDM symbol (see Fig. 3).

Practice Television Broadcasting Systems

8

DataCP

N

N

Copy

N/CP

Fig. 3. Cyclic prefix insertion

Taking all this in mind our function must look like this:

This function will just use reshape to put all the symbols divided by rows, SysCfg.CP needs to

be added to systemconfig.m, and given a value according to the ones available in DVB-T (4, 8,

16, 32). The functionality to be coded in this function is to take the corresponding last columns

(nfft/cp) of the resulting matrix and copy it in the beginning. As an example you can try the

following in a MATLAB shell:

If you look carefully first we have a matrix with 3 rows and 6 columns. Using this matrix we

create a second one, B matrix is the same as A but with copying the last 2 columns in the

beginning, that is exactly what we want to do when we add the cyclic prefix. The only thing to

change to this example in the creation of the B matrix is the number of columns to copy in the

beginning. With a very similar line in the line 13 of the given code the function will work.

Practice Television Broadcasting Systems

9

In order to test if you succeed you can subtract to the first NFFT/CP data the last NFFT/CP. To

make a “breakpoint” in MATLAB to debug write in the line of your code where you want to

stop the word “keyboard”, the program will stop and you will have the control of the shell

again to make any operation or to check any variable in the workspace. To return to the

execution of the program type “return” in the shell and press enter.

3.2. Cyclic prefix removal: rx_cp.m
This is the first block in the receiver (supposing a perfect detection and time and frequency

synchronization), the receiver performs the reverse operations of the ones in the transmitter

in reverse order, so the first part in the receiver will be the reverse of the last in the

transmitter, the cyclic prefix removal. This function will be very similar to the tx_cp, but in this

case instead of adding a copy of the last NFFT/CP samples in every OFDM symbol we have to

remove this number of sample from the beginning of each symbol, or looking it from another

point of view we need to take the last NFFT samples of every one of them. Said so the

function will look like this:

There is only one line to be added to this code proposed, the one in with we take the last NFFT

samples of every row (remember as it was shown in the previous section that for that we will

need to use something similar to: B=A(:,startingValue:end)).

3.3. Fourier Transform: rx_fft.m
This function will take the data from the time domain to the frequency domain so it has again

the shape of a QAM constellation. This function is exactly the same as the tx_ifft but changing

the ifft line for fft line, so I will provide the whole code for this file because there is not a lot of

difficulty in it.

Practice Television Broadcasting Systems

10

3.4. Symbol demapping: rx_demap.m
This is the more complex part to code, but I will try to make it easy. This part of the receiver is

the opposite to translate the bits into constellation points, this process is not exactly

instantaneous because usually there is noise in the channel or attenuation and what we

receive is far from being what we transmitted. So this is more an statistical problem, which

symbol of the ones we know that have been possibly transmitted looks more a like to what we

received? The answer to this question is the one that is closer in distance.

Noisy channel

Fig. 4. Demapping a received point

In Fig. 4 we can see how a transmitted point will suffer a distortion because of the noise and

instead or receiving the points in their ideal position we receive them as a cloud of points, that

will be more or less similar to the ideal transmitted constellation depending on the noise. In

red squares it is marked the ideal constellation points, every point received (black circles)

would had been more probably transmitted as the ideal point that is closer. This is, we need to

measure the distance of every point received to the ideal ones and the one that is smaller we

will take as the transmitted point.

With all this theory in mind the code could look like this:

Practice Television Broadcasting Systems

11

There is only one line to be filled (line 16), in this line you need to calculate the distance from

the ideal symbols (idealSymbols) to the received ones (compMatrix). The two matrix have the

right dimensions and the absolute value in matlab is the function abs(), when applied to a

matrix it gives the absolute value of all its elements.

This code is optimized to not to use for loops so I will explain it a bit so you don’t get very lost.

First of all we get the vector of the points in our constellation (in the case of a QPSK

1/sqrt(1)*[1+j,-1+j,-1-j,1-j]) and store it in idealSymbols and the bits per symbol (bps, in the

case of a QPSK 2 bits per symbol) and also the number of points in the constellation

(possibleSymbols, in a case of QPSK 4). In line 14 we create a matrix that has as many columns

as received points, this would make a row vector with all the received points, and we repeat

this vector as many times as number of points are in the constellation by using repmat

function (see Fig. 5).

1 2 3 4 5 6 7 8 9 N

Number of received points

rep
m

at

DataIn

1 2 3 4 5 6 7 8 9 N

Number of received points

1 2 3 4 5 6 7 8 9 N
1 2 3 4 5 6 7 8 9 N
1 2 3 4 5 6 7 8 9 N

Number of
constellation points

compMatrix

Fig. 5. Repmat usage

Practice Television Broadcasting Systems

12

We do something similar in 15 with the ideal constellation points (idealSymbols), we repeat

them to have in the rows the different points and this is repeated N times to have a column for

each received symbol.

After this, in line we look for the minimum in every column and it will tell us the index of the

transmitted data. The rest of the code is to have a graphical way to verify if the process was

correct, we calculate the errors we had and plot them with the symbols and later with the bits.

Take into account that the system_run.m file needs to be modified to call all the functions

created, it should look like this:

After coding all the files and running “system_run” in the Matlab shell it should be obtained

that 0 errors were produced in the transmission.

3.5. Adding AWGN
The last step of the practice will be to add some noise to our signal so the transmission has

several errors. In order to do so, depending on the SNR (Signal to Noise Ratio) that we have,

we will modify “system_run.m” and create another file, “ch_noise.m”, inside the “ch” folder.

Practice Television Broadcasting Systems

13

As it can be seen, now we have a propagation part in the “system_run” which takes as an input

the output of the transmitter and whose output will be the input of the receiver. Also we are

adding to the configuration structure the SNR that we want for the simulation and the noise

seed for the random noise generation.

