DVB-T

Transmitter

1. Introduction

Why DTT instead of analogue TV?

Analogue TV

- Saturation of the radio spectrum
- Rx problems: double image, background noise, interferences
- High SNR levels needed in reception
- Data transmission very limited (teletext, not very attractive...)

DTT

- Better use of the radio spectrum by allowing more channels
- Better image quality
- Mobile and handheld reception
- Lower Tx power
- Easy home reception
- Interactivity

5

The analogue switch off has been carried out in this and the past decade in the different countries:

Country	Launch	Analogue switch off start	Analogue switch off end	DTT transmission	AV standard
Russia	2010	2015	2019 (planned)	DVB-T2	H.264
France	2005	2009	2011	DVB-T	H.262
Spain	2000/2005	2009	2010	DVB-T	H.262/H-264
U.K.	1998	2007	2012	DVB-T/T2	H.262/H.264
Italy	2004	2008	2012	DVB-T	H.262/H.264
Germany	2003	2003	2008	DVB-T	H.262/H.264
U.S.A.	1998	2008	2009	ATSC	H.262/H-264 ATSC 2.0

- More tan 200 million devices all over the world receive DVB compliant service
- DVB-T and DVB-T2 are used in more than 70 countries

2. DVB-T Standard

- ETSI EN 300 744: Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television
 - The full specification can be downloaded form the ETSI website
- Some general characteristics
 - COFDM modulation
 - MPEG-2 Transport Stream Input
 - Hierarchical transmissions
 - Two transmission modes (2k, 8k)
 - 3 modulation schemes: QPSK, 16-QAM, 64-QAM
 - 5 coding rates in the FEC
 - 4 guard intervals

- Designed for DTT and to operate in the VHF and UHF bands
- Coexisted with systems as PAL, NTSC and SECAM so it is a must to be robust to CCI and ACI
- A high spectral efficiency is needed, so SFNs configurations are included in the standard

- Multi frequency network (MFN)
 - Classical approach in cell division where a set of cells use a different frequency to transmit and there is a minimum distance to re-use the same frequency

- Single Frequency Network (SFN)
 - All the transmitters are synchronized in terms of bit, frequency and time
 - All the transmitters transmit the same at the same time and frequency
 - Previously a single analogue program was transmitted using 9 frequencies, with SFNs a single frame is transmitted in a frequency
 - Very high spectral efficiency
 - Very strict synchronization requirements

 The standard can be divided in the following conceptual parts

3. Source coding

4. Channel coding

The channel coding is separated in the following blocks

The input stream is the MPEG2 TS
 The output will be modulated in the OFDM modulator

MUX

- Energy adaptation and dispersion
- randomization: avoid long sequences of "1" and "0"
- PRBS (Pseudo Random Binary Sequence)
 - The period is 1503 bytes (8 MPEG-2 TS packets)
- At the receiver the same sequence is applied

Outer coder

- Allows the correction of errors by inserting redundancy bits
- Reed-Solomon code RS(204, 188, t=8)
 - Input block: 188 bytes
 - Codified Output: 204 bytes (16 bytes redundancy)
 - Corrector capacity of 8 bytes
- Optimum work case when errors are uniformly distributed

Outer interleaver

- Eases the correction of burst errors
 - Burs errors affect to consecutive bytes (as stated before the ideal work case for FEC is when the errors are uniformly distributed)
- Scatters the consecutive data in different packets
- 12 branches with depth *j*x*M* with j=0,1,2 ... 11 and M=204/12=17

- Every branch stores one byte at time
- The Sync byte of the frames must always pass though the 0 branch

Inner coder

- Adds more redundancy in order to correct errors at a bit level
- It is based in a convolutional encoder (Viterbi decoder at reception)

- For each input bit there are two output bits
 1/2 code rate
- Makes the codewords very robust against errors
- Half of the capacity of the channel is lost
 - A puncturing process is applied at the output to not to lose that much capacity
 - DVB-T has code rates of 1/2, 2/3, 3/4, 5/6 and 7/8

Inner interleaver

- Shuffles the data to avoid at the receiver side the decoder to have consecutive erroneous bits
- It is performed at two levels
 - Bit level
 - QAM symbol level
- It mixes the high priority and low priority streams when hierarchical modulation is used

 As an example the scheme for the inner interleaver for a QPSK constellation is as follows

- x_0 maps to $b_{0,0}$ and x_1 to $b_{1,0}$ (even bits upper branch and odd lower)
- Every branch has a different interleaver, the first one doesn't change order, the rest: $idx' = (idx + offset) \mod 126$

Mapper

- Gathers the input bits in words of v bits
- To each created word an I,Q value in the complex plane is assigned
 - The set of possible I,Q values is called constellation
- Three possible constellations

5. OFDM

- The mapper output is grouped in sets of 1512 or 6048 QAM symbols
- In the frequency domain an OFDM symbol is composed by this set of data and control data (pilots)
- An OFDM symbol is composed by 1705 or 6817 carriers (2k and 8k modes respectively)

Transmission Parameter Signalling (TPS)

- Their position is fixed in the symbol
- Modulated with a D-BPSK constellation
- Information about
 - Transmission mode (2k, 8k)
 - Transmitted constellation
 - Coding rate

Continual pilots

- Their position is fixed in the symbol
- Modulated with a BPSK constellation
- The data is known (coming from a PRBS)
- Synchronism purpose

Scattered pilots

- Their position varies in each symbol
- Modulated with a BPSK and with known data from a PRBS
- They are used for channel estimation purpose at the receiver

Cyclic prefix

- There are 4 possible cyclic prefix for each mode
- 1/4, 1/8, 1/16, 1/32 of NFFT
- The higher the number of samples of the cyclic prefix is:
 - More robustness to the multipath channel echoes
 - Lower data rate

Bandwidth

- Depending on the country, the TV channels have different bandwidth
- DVB-T allows 8, 7, 6 and 5 MHz channel bandwidth
- For 8 MHz channels
 - Symbol time (not taking into account the CP): 224µs for 2k mode and 896µs for 8k mode
 - Sampling frequency: 9.14MHz
 - Carriers spacing: 4464.3 Hz and 1116.1 Hz for 2k and 8k modes respectively
 - Actual bandwidth: 7.6MHz (1705 x 4464.3 and 6817x1116.1)

Data rates

Total binary rate for the data carriers:

 $R_T = f_S v L(bits/s)$

- f_S = symbol frequency =1/ T_S
- T_S = time duration of a symbol
- v= number of bits per carrier (number of bits in each transmitted QAM constellation point)
- L= number of data carriers
- Effective binary rate or channel capacity $R_E = R_T \cdot r \cdot 188/204(bits/s)$
 - r= coding rate
 - 188/204= ratio between the Reed-Solomon input and output

Example

For a 2k mode, r=3/4, guard interval 1/4, 16-QAM constellation, and 8MHz channel:

$$T_S = 280 \mu s, \nu = 4, R = 3/4$$

- $R_E = 16.84 Mbps$
- For a 8k mode the R_E is the same, it is independent to the mode
- For 8MHz channels
 - Maximum data rate is 31.67Mbps for a 64-QAM, r=7/8 and CP=1/32
 - Minimum data rate is 4.98Mbps for QPSK, r=1/2 and CP=1/4

THANKS!

Any questions?

Darío Alfonso Pérez-Calderón Rodríguez dperez@gas-granat.ru

Presentation template by SlidesCarnival