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Introduction

Congestion – the state of a network in which the offered load
exceeds the network capacity for a certain period of time

Under congestion conditions, network performance becomes worse:

Packets get lost
Delays and delay variation (aka delay jitter or jitter) increase
Local and network resources are wasted
Quality of Experience (QoE) degrades

Delay jitter is an important QoS parameter for real-time applications
such as voice over IP (VoIP), video on demand (VoD), etc.
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Introduction (cont’d)

Congestion occurs when resource demands exceed the capacity

Network congestion as traffic jams due to:

Fast rerouting in case
of a failure

Bottleneck Cross-traffic

Roman Dunaytsev (SUT) Protocols & Services Lecture № 9 5 / 75



Introduction (cont’d)

In engineering, bottleneck – a phenomenon by which the
performance or capacity of an entire system is severely limited by a
single component

In computer networks, a bottleneck limits the maximum achievable
throughput

Roman Dunaytsev (SUT) Protocols & Services Lecture № 9 6 / 75



Introduction (cont’d)

Identifying actual and potential bottlenecks is a nontrivial task

1 Gbps 100 Mbps2 Mbps 10 Mbps

1 Gbps 100 Mbps2 Mbps

Bottleneck?

10 Mbps

Bottleneck?

Bottleneck
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Introduction (cont’d)

Congestion collapse – the situation in which an increase in the
offered load results in a decrease in the number of packets delivered
successfully by the network

Congestion collapse arises when capacity is wasted sending packets
through the network that are dropped before they reach their final
destination
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Introduction (cont’d)

In the early days of the Internet, TCP did not have effective
congestion control algorithms, and the result was networkwide
congestion collapse on several occasions in the mid-1980s

Congestion collapse begins with a steady increase in the load on the
network
As hosts send more packets, more packets are queued in the buffers of
the routers
Increased delays and lost data induced by congestion lead to timeouts,
which trigger retransmissions
A large number of retransmissions overload the network even further
As a result, the network throughput drops to a small fraction of its
normal capacity and this condition is stable

See RFC 896 ’Congestion Control in IP/TCP Internetworks’
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Introduction (cont’d)

As users come and go, so do the data flows they initiate

Network performance is largely governed by these fluctuations

The Internet Traffic Report monitors the flow of data around the
world: www.internettrafficreport.com

E.g., router telenor-gw.bengtdahlgren.se (Gothenburg, Sweden)

Response time Packet loss
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Overprovisioning

2 approaches to avoid congestion :

Overprovisioning
Congestion control

G. Finnie, ’ISP Traffic Management Technologies: The State of the
Art,’ Report ISBN 978-1-100-11839-0, January 2009

On behalf of the Canadian Radio Television and Telecommunications
Commission

Nowadays, the common choice of Internet Service Providers
(ISPs) is overprovisioning

The overprovisioning ratio varies widely and depends on:

The underlying network topology and technology
The volume of traffic and anticipated variation in traffic loads
The number of users and the kind of users
The mix of applications
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Overprovisioning (cont’d)

The reasons for overprovisioning are of a purely financial nature:

Bandwidth has become cheap
It is more difficult to control a network that does not have enough
bandwidth than an overprovisioned one
With an overprovisioned network, an ISP is prepared for the future

However, adding extra bandwidth cannot solve the problem alone

In fact, overprovisioning works in combination with TCP congestion
control mechanisms
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Congestion Control

The goal of congestion control is to prevent applications from either
overloading or underutilizing the available network resources

I.e., to achieve the highest possible throughput while maintaining a low
packet loss rate and a small delay

Congestion must be avoided because it leads to queue growth, while
queue growth leads to delay and loss

Thereby, the term ’congestion avoidance’ is sometimes used instead

Storing packets in a queue adds significant delays, depending on the
length of the queue

Thus, queues should be kept short

Moreover, packet loss can occur no matter how large the buffer is
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Congestion Control (cont’d)

Congestion control should be distinguished from flow control

Flow control – prevents the sender from overloading the receiver

Congestion control – prevents the sender from overloading the
network

Congestion control is relevant to multihop networks, where end systems
(hosts) are connected by a series of intermediate systems (e.g., routers)

Congestion control is tightly linked with flow control, error control,
and QoS provisioning

Host Host
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Congestion Control (cont’d)

2 methods to control the sending rate :

Rate-based control
Window-based control

Rate-based control – the sender is aware of a specific data rate,
and the receiver or a intermediate system informs the sender of a new
rate that it must not exceed

Benefits of rate-based congestion control:

Streaming media applications work best when they are able to sustain
a constant or smoothly varying data rate over a relatively long period
of time

Shortcomings of rate-based congestion control:

Complexity
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Congestion Control (cont’d)

Window-based control – the sender keeps track of the window –
– a certain amount of data that it is allowed to send before new
feedback arrives

With each PDU sent, the window is decreased until it reaches 0
The receiver accepts and counts incoming PDUs and informs the
sender that it is allowed to increase the window by a certain amount
Since the sender’s behavior is very strictly dictated by the presence or
absence of incoming feedback, window-based control is said to be
self-clocking

Benefits of window-based congestion control:

Network stability, since a new packet is not put into the network until
an old packet leaves

Shortcomings of window-based congestion control:

Burstiness because packets are put into the network in bursts
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Congestion Control (cont’d)

2 types of control systems :

Open-loop control systems
Closed-loop control systems

Open-loop congestion control – implies use of a priori knowledge
about the network

E.g., the available bandwidth along a certain route

A network that is solely based on open-loop control would use
resource reservation

Thus, a new flow would only enter if the Connection Admission
Control (CAC) entity allows it to do so

This is how congestion has always been dealt with in the PSTN: when
a user wants to call somebody but the network is overloaded, the call is
simply rejected
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Congestion Control (cont’d)

Closed-loop congestion control – the sender tunes its data rate
based on the feedback from the receiver

2 types of feedback :

Implicit
Explicit

Implicit feedback is based on end-to-end behavior analysis without
any explicit help from the network

Explicit feedback is based on messages generated by the network
and sent to the end system to indicate a congestion condition
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Congestion Control (cont’d)

Implicit congestion control – a scheme under which end systems
first detect a possible congestion condition by means other than
explicit congestion messages, and then take appropriate action to
reduce their rate

An example of implicit congestion control is using packet loss (or
excessively delayed packets) as a means of detecting congestion in TCP

Benefits of implicit congestion control:

Simplicity, since it does not require explicit feedback from the network

Shortcomings of implicit congestion control:

Interpreting packet loss as a sign of congestion only works well if this is
truly the main reason for packets to be dropped
Solely relying on packet drops means that sources always need to
increase their rates until queues are full, that is, we have a form of
congestion control that first causes congestion and then reacts
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Congestion Control (cont’d)

What bad can happen to a packet as it travels from source to
destination?

1 It can be excessively delayed

Due to queuing or retransmissions at the link layer

2 It can be dropped

Due to buffer overflow, rejected by admission control, mistrouted,
equipment malfunctions, checksum fails, etc.

3 It can be duplicated

Due to equipment malfunctions

Each of these things can happen due to a variety of reasons, not only
as a result of congestion
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Congestion Control (cont’d)

Explicit congestion control – a scheme under which end systems
rely on information from the network about impending and current
congestion

An example of explicit congestion control is sending Source Quench
messages in ICMP

Benefits of explicit congestion control:

Accuracy

Shortcomings of explicit congestion control:

Complexity
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Congestion Control (cont’d)

Taxonomy of congestion control approaches

ICMP Source Quench
ECN

Congestion 
control

Open-
loop

Closed-
loop

Implicit 
feedback

Explicit 
feedback

TCP
TFRC

PSTN, GSM
ATMCAC
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ICMP Source Quench

The first congestion control scheme for the Internet was proposed by
John Nagle in 1984 and is known as Source Quench

In IPv4, a device that is forced to drop packets due to congestion
provides feedback to the senders that overwhelmed it by sending
them ICMPv4 Source Quench messages

When a sender receives one of these messages it knows that it needs
to decrease its sending rate

Congestion signaling

ReceiverSender

Data flow

ACK flow (if any)

Congestion

Roman Dunaytsev (SUT) Protocols & Services Lecture № 9 26 / 75



ICMP Source Quench (cont’d)

The Internet Control Message Protocol (ICMP) was first

specified in RFC 792

ICMP is the protocol that handles error and other control messages
It is used by both end systems and intermediate systems
ICMP messages are encapsulated into IP packets

ICMPv4 Source Quench message format:

0 31

Type = 4 Code = 0 Checksum

7 15 23

Unused (all “0”s)

Original IP packet portion 
(Original IP header + first 8 bytes of data field)
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ICMP Source Quench (cont’d)

There are no rules about when and how a device generates Source
Quench messages

Typically, 1 message is generated for each dropped packet
Devices may decide whether to quench all senders or only certain ones

There is also no method for the device to signal a sender it has
’quenched’ that it is no longer congested and to resume its prior
sending rate

Usually, a sender will reduce its rate until it no longer receives the
messages any more, and then may try to slowly increase the rate again

The mechanism to respond to Source Quench may be in the transport
layer or in the application layer

The recommended procedure for TCP is to trigger slow start as if a
retransmission timeout had occurred
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ICMP Source Quench (cont’d)

Benefits of ICMP Source Quench:

It is the fastest method to notify senders that they should reduce their
rate
The feedback is explicit and, thus, more or less precise

Shortcomings of ICMP Source Quench:

The consumption of bandwidth on the reverse path
The use of router resources (memory and CPU power) while the router
is overloaded
The lack of information communicated in Source Quench messages
makes them a rather crude tool for managing congestion

As specified in RFC 1812, generating source quench messages is
not recommended behavior for routers anymore
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ECN

Explicit Congestion Notification (ECN) is defined in RFC 3168

ECN provides a method for an intermediate router to notify the hosts
of impending network congestion

In the Internet, the use of active queue management (AQM)
allows detection of congestion before the router buffer overflows

The ECN scheme enhances the AQM behavior by forcing the router
to mark the packets instead of dropping them

ACK flow + congestion signaling

Data flow + congestion signaling

ReceiverSender
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ECN (cont’d)

ECN support in TCP uses 2 bits in the TCP header that were
previously defined as the Reserved field

CWR (Congestion Window Reduced)
Used by the sending host to indicate that it has received a TCP
segment with the ECE flag set to 1

ECE (ECN-Echo)
Used during connection setup to indicate that a host is ECN-capable
Used later during data transfer to indicate that a TCP segment was
received with the ECN field in the IP header set to 11

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E
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ECN (cont’d)

ECN support in IP uses 2 bits of the Type of Service (ToS) field:

ECN-Capable Transport (ECT)
It is set by the source and indicates whether the transport connection
supports ECN

Congestion Experienced (CE)
It is set by a router and indicates that congestion has been encountered

ToS field

0 7 15 23 31
C
E

E
C
T

Source IP address

Header checksum

IHL Total lengthVersion

Identification Flags Fragment offset

ProtocolTime to live

Destination IP address

Options (if any) Padding

Data (TCP segment)
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ECN (cont’d)

ECN works as follows:

During connection setup, both TCP entities exchange information
about their willingness to use ECN

The host that performs an active open sets the ECE and CWR flags in
the TCP header of the SYN segment
The host that does a passive open sets only the ECE flag in the TCP
header of the SYN/ACK segment

During data transfer, the ECN-capable hosts send packets with the
ECT and CE flags in the IP header set to either 10 or 01

If ECN is not in use and congestion is detected at an intermediate
router, packets are dropped as usual
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ECN (cont’d)

If congestion is detected at ECN-capable routers, then packets are not
dropped unless the congestion is very severe

Instead, a router that has congestion imminent sets the ECT and CE
flags in the IP header to 11

When the receiving host receives this packet, it sets the ECE flag in
the TCP header and continues setting this flag in subsequent ACKs

When the sending host receives the ACK with the ECE flag, it acts as
if a single packet has been dropped

It triggers the congestion avoidance algorithm and halves the cwnd size

Then the sending host sets the CWR flag in the TCP header of the
next segment in order to acknowledge the reception of the congestion
notification

On receipt of the segment with the CWR flag set on, the receiving
host stops setting the ECE flag in subsequent ACKs
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ECN (cont’d)

Benefits of ECN:

ECN prevents TCP connections from unnecessary packet drops or
retransmission timeouts

Shortcomings of ECN:

ECN requires AQM to be in place
The potential improvement in TCP performance can only be achieved
when both source and destination hosts support ECN and ECN-capable
routers are deployed along the path
A misbehaving receiver could easily inform a sender that everything
was all right by just ignoring the CE bit; this would lead the sender to
unfairly increase its cwnd further when it should actually be reduced
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ECN (cont’d)

Many modern operating systems support ECN

However, it is usually disabled by default

As a result, less than 1% of today’s Internet traffic is ECN-capable

Internet2 NetFlow: Weekly Reports (April 26, 2010)

D. Murray, T. Koziniec, ’The state of enterprise network traffic in
2012,’ 18th Asia-Pacific Conference on Communications, pp.
179-184, October 2012

0% of TCP connections requested ECN during the three-way handshake
0.07% of TCP packets were marked as ECN-capable
0.0007% of TCP packets were marked with CE in the IP header
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Congestion Control in TCP

Most Internet applications use TCP for error-free data delivery and
proper sequencing

As a result, TCP controls a large fraction of bytes and packets
traversed over the Internet

H. Schulze, K. Mochalski, ’Internet
Study 2008/2009,’ ipoque GmbH

Internet2 NetFlow: Weekly Reports
(April 26, 2010)
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Congestion Control in TCP (cont’d)

The standard TCP congestion control is reactive window-based
congestion control

It uses either packet losses or excessively delayed packets to trigger
congestion alleviation actions

In steady state, TCP congestion control works as follows:
1 The sender increases the window size linearly until a packet loss occurs
2 Once a packet loss is detected, the sender halves the window size

Therefore, this rate control strategy is called
additive increase/multiplicative decrease (AIMD)

The current stability of the Internet largely depends on TCP
congestion control
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Congestion Control in TCP (cont’d)

TCP function Implementation

Ordered data transfer and 
data segmentation

Connection establishment and termination
MSS option
Path MTU discovery

Multiplexing/demultiplexing Port numbers

Error control Checksum computation
Sequence numbers
Protection against wrapped sequences
Cumulative and selective ACKs
Retransmission timer and retransmissions

Flow control Receive window
Silly window syndrome avoidance
Nagle algorithm
Window scale option

Congestion control Karn’s algorithm
Initial window
Slow start
Congestion avoidance
Fast retransmit and fast recovery
ECN-support
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Karn’s Algorithm

TCP uses a retransmission timer to ensure data delivery in the
absence of any feedback from the receiver

1 When TCP sends a segment containing data, it retains a copy of the
data in the retransmission queue and starts the retransmission timer

2 If the data are not acknowledged before the retransmission timer
expires, the data are retransmitted

3 When the segment is acknowledged, TCP removes the data from the
retransmission queue

How to estimate this Retransmission TimeOut (RTO) value?

If the timeout is set too small, it will cause unnecessary retransmissions
If the timeout is set too big, it will lead to lengthy idle periods and late
retransmissions
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Karn’s Algorithm (cont’d)

Because of the changing network conditions, RTO must be adjusted
dynamically

The algorithm used to compute and manage the retransmission timer
is described in RFC 2988

It is based on taking RTT samples

Round-Trip Time (RTT) = the time from when a segment is sent
until it is acknowledged

Until the first RTT measurement has been made, the initial RTO
value is set to 3 seconds
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Karn’s Algorithm (cont’d)

RTO can be approximated as a sum of the mean RTT and the
additional term, which reflects the RTT variance

RTO = SRTT + max (clock granularity, 4∗RTTVAR)
SRTT = Smoothed Round-Trip Time
RTTVAR = Round-Trip Time Variation

SRTT and RTTVAR are computed using Exponentially Weighted
Moving Average (EWMA)

TCP puts more weight on the recent history and less weight on the last
measurement

Commonly, TCP implementations use a coarse-grained timer, having
granularity of 500 ms, to measure the RTT and trigger the RTO,
which imposes a large minimum value on the RTO
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Karn’s Algorithm (cont’d)

If the RTT has low variance, then the computed RTO value will be
only slightly greater than the mean RTT

If the RTT has high variance, then the computed RTO value will be
much greater than the mean RTT

Low RTT variance High RTT variance
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Karn’s Algorithm (cont’d)

Whenever RTO is calculated, if it is less than 1 second then it should
be rounded up to 1 second

Low RTT variance High RTT variance
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Karn’s Algorithm (cont’d)

The retransmission ambiguity problem – a TCP sender’s inability
to distinguish whether the first ACK that arrives after a retransmission
was sent in response to the original transmission or the retransmission

This problem occurs after a timeout-based retransmit and after a fast
retransmit

Sender Receiver

original transmission

retransmission

ACK

Sender Receiver

original transmission

     
ACK

RTT

Sender Receiver

original transmission

ACK

retransmissionRTT? RTT?
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Karn’s Algorithm (cont’d)

How to ensure that ambiguous RTTs will not corrupt the calculation
of RTO?

The solution for taking RTT samples is based on the use of a
technique called Karn’s algorithm , after its inventor, Phil Karn:

Do not take into account the RTT sampled from segments that have
been retransmitted
On successive retransmissions, set each timeout to twice the previous
one

This doubling (aka the exponential backoff) is repeated for each
unsuccessful retransmission up to 6 times, after that RTO remains
constant and equal to 64∗RTO

RTO, 2∗RTO, 4∗RTO, 8∗RTO, 16∗RTO, 32∗RTO, 64∗RTO,
64∗RTO, 64∗RTO, . . .
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Initial Window

The algorithms used by TCP to control the amount of data being
injected into the network:

Slow start
Congestion avoidance
Fast retransmit and fast recovery (typically, used together)

To implement these algorithms, 2 variables are added to the TCP
per-connection state:

Slow start threshold (ssthresh)
Congestion window (cwnd)

ssthresh is used to determine whether the slow start or congestion
avoidance algorithm is used to control data transmission

cwnd is a sender-side limit on the amount of data the sender can
transmit into the network before receiving an ACK

At any time, window = min (rwnd, cwnd)
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Initial Window (cont’d)

When a new TCP connection is established, the cwnd is set to
the initial window (IW)

In RFC 3390, the maximum IW size is defined as

IW = min (4∗MSS, max (2∗MSS, 4380 bytes))

The valid range is from 1 to 4 full-sized segments

E.g., for MSS = 1460 bytes, the maximum IW size is 3 segments

The majority of Web servers use an IW of 2 segments

Default TCP settings:

Microsoft Windows XP: 1460 bytes
Microsoft Windows Server 2003: 4380 bytes
Microsoft Windows Server 2008: 2920 bytes
Microsoft Windows 7: 2920 bytes
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Initial Window (cont’d)

Microsoft Windows 7 Ultimate
IW = 2920 bytes or 2 segments containing 1460 bytes of data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 9 51 / 75



Slow Start

To probe the network path and to determine how much bandwidth is
available, TCP uses an algorithm called slow start

When a new TCP connection is established, the cwnd is set to the IW
size and the sender starts transmitting data

For every ACK received that acknowledges new data, the cwnd is
incremented by the number of bytes in the sender’s MSS

I.e., by 1 full-sized segment

This results in an exponential growth in the number of segments
that can be sent per RTT
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Slow Start (cont’d)

When IW = 1 segment, a receiver employing delayed ACKs is forced
to wait for a timeout before generating an ACK

1

2

6

4

7

9

1

2
3

4

7

1 2 3 4 5 6 7 8 9

W1 = 1

1 2 3 4 5 6 7 8 9

W2 = 1 + 1 = 2

1 2 3 4 5 6 7 8 9

W3 = 2 + 2 = 4

delayed ACK
timeout

1 2 3 4 5 6 7 8 9

W1 = 1

1 2 3 4 5 6 7 8 9

W2 = 1 + 1 = 2

1 2 3 4 5 6 7 8 9

W3 = 2 + 1 = 3

1 2 3 4 5 6 7 8 9

W4 = 3 + 1 = 4

8

15

7 8 9 10 11 12 13 14 15

W4 = 4 + 4 = 8

Wi+1 = Wi + Wi = 2Wi Wi+1 = Wi + 0.5Wi = 1.5Wi

slow start;
ACK with delay

slow start;
ACK without delay

3
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Slow Start (cont’d)

When IW ≥ 2 segments, the receiver will generate an ACK after the
second data segment arrives, which eliminates the wait on the timeout

1

3
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6
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1 2 3 4 5 6 7 8 9
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1 2 3 4 5 6 7 8 9
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ACK with delay
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delayed ACK
timeout
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slow start;
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Congestion Avoidance

During slow start, the cwnd increases exponentially over time until a
packet loss occurs or the cwnd reaches the ssthresh

In case of a packet loss, TCP interprets it as the evidence that the
network is experiencing congestion and reduces the size of the cwnd

In turn, this slows down the sending rate and helps to alleviate the
congestion problem

In case when the cwnd exceeds the value of the ssthresh, TCP enters
congestion avoidance

As a rule, the initial value of the ssthresh is set to 65,535 bytes
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Congestion Avoidance (cont’d)

During congestion avoidance, the cwnd is incremented by
MSS∗MSS/cwnd bytes for every non-duplicate ACK

This leads to a linear growth of the cwnd, compared to slow start’s
exponential growth

When the receiver acknowledges every received segment, the cwnd
increases by 1 full-sized segment for each successfully transmitted
window
When the receiver employs delayed ACKs, the cwnd increases by 1
full-sized segment for every other successfully transmitted window

Congestion avoidance continues until congestion is detected

Roman Dunaytsev (SUT) Protocols & Services Lecture № 9 56 / 75



Congestion Avoidance (cont’d)

The congestion avoidance phase continues as long as new ACKs
arrive before their corresponding timeouts

Wi+1 = Wi + 1

congestion avoidance;
ACK without delayW1 = 4

W2 = W1 + #ACK / W1 = 4 + 4/4 = 4 + 1 = 5

W3 = W2 + #ACK / W2 = 5 + 5/5 = 5 + 1 = 6

W4 = W3 + #ACK / W3 = 6 + 6/6 = 6 + 1 = 7
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Congestion Avoidance (cont’d)

Since TCP increases the cwnd based on the number of arriving ACKs,
reducing the number of ACKs slows the cwnd growth rate

congestion avoidance;
ACK without delay

W1 = 4

W2 = 4 + 2/4 = 4.5

congestion avoidance;
delayed ACK

W3 = 4.5 + 2/4 = 5

W4 = 5 + 2/5 = 5.4

W1 = 4

W2 = 4 + 4/4 = 5

W3 = 5 + 5/5 = 6

W4 = 6 + 6/6 = 7
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Congestion Avoidance (cont’d)

TCP detects a segment loss in 2 different ways :

By a timeout event
By the arrival of duplicate ACKs

The sender starts the retransmission timer when it sends a window of
segments and assumes that the data were lost if no ACK has been
received within the specified period

Then the sender sets the ssthresh to be 1/2 the amount of data in
flight (aka the flight size) or 2 full-sized segments, whichever is
larger

ssthresh = max (FlightSize/2, 2∗MSS)

The sender also sets the cwnd to the size of 1 full-sized segment,
retransmits the lost segment, and enters slow start

When the ssthresh is exceeded, the sender enters the congestion
avoidance phase again
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Congestion Avoidance (cont’d)

After retransmitting the lost segment, the sender uses the slow start
algorithm to increase the cwnd from 1 full-sized segment to the new
value of the ssthresh

W1 = 4

W2 = 4 + 4/4 = 5

W3 = 5 + 5/5 = 6

W4 = 6 + 6/6 = 7

W1 = 4

FlightSize = 4;

ssthresh = 

= max(4/2, 2) = 2;

W2 = 1

W3 = 1 + 1 = 2;

W3 > ssthresh

W4 = 2 + 2/2 = 3

congestion avoidance;
ACK without delay

congestion avoidance;
ACK without delay

RTO

SS

CA
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Fast Retransmit and Fast Recovery

The other way TCP can detect a segment loss is by the arrival of
duplicate ACKs, which is known as fast retransmit

When a duplicate ACK is received, the sender does not know if this is
because a data segment was lost or because it was delayed and
received out-of-order at the receiver

Then the sender waits for a small number of duplicate ACKs to be
received

In order to provide timely detection of lost data, the fast retransmit
algorithm is triggered when the sender receives 3 duplicate ACKs

I.e., 4 identical ACKs in a row

Thus, after receiving the third duplicate ACK, TCP performs a
retransmission of what appears to be the missing segment, without
waiting for the retransmission timer to expire
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Fast Retransmit and Fast Recovery (cont’d)

Fast retransmit allows to avoid timeout and the subsequent slow start
phase

The reason for not performing slow start in this case is that the
receipt of the duplicate ACKs tells TCP more than just a segment has
been lost:

Since the receiver can only generate a duplicate ACK when another
segment is received, this implies that subsequent segments have left
the network and are in the receiver’s buffer
Thus, there is still data flowing between the hosts, and TCP does not
need to reduce the data rate abruptly by going into slow start

The fast retransmit algorithm first appeared in TCP Tahoe and was
followed by slow start

The fast recovery algorithm appeared in TCP Reno

Roman Dunaytsev (SUT) Protocols & Services Lecture № 9 62 / 75



Fast Retransmit and Fast Recovery (cont’d)

To speed up the recovery of the sending rate after congestion in the
network has been detected and eliminated, a new algorithm, called
fast recovery , has been specified in RFC 2001

The fast retransmit and fast recovery algorithms are usually
implemented together:

1 When the third duplicate ACK is received, the ssthresh is set as
max (FlightSize/2, 2∗MSS)

2 The lost segment is retransmitted and the cwnd is set to
ssthresh + 3∗MSS

3 For each additional duplicate ACK received, the cwnd is incremented
by 1 full-sized segment

4 A new segment is transmitted, if allowed by the updated value of the
cwnd and the value of the rwnd advertised in the duplicate ACKs

5 When the next ACK arrives that acknowledges new data, the cwnd is
set to the ssthresh and the sender enters congestion avoidance
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Fast Retransmit and Fast Recovery (cont’d)

TCP Reno has serious performance problems when multiple segments
in the same window are lost

1

7

11

1 2 3 4 5 6 7 8

W1 = 6

W2 = W1

14

16

W4 = ssthresh = 3

6

6 7 8 9 10 11 12 13

1

7

9

4

1 2 3 4 5 6 7 8

W1 = 6

W2 = W1

5

3 4 5 6 7 8 9 10

4

6

3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

RTO

14

6 7 8 9 10 11 12 13 14

8 9 10 11 12 13 14 15 16

6
12
13

congestion avoidance;
ACK without delay

congestion avoidance;
ACK without delay

9

CA

FR

CA

CA

FR

SS

FlightSize = 6;

ssthresh = 6/2 = 3;

W3 = 3 + 5 = 8;

W3 > FlightSize

FlightSize = 6;

ssthresh = 6/2 = 3;

W3 = 3 + 3 = 6;

W3 = FlightSize

W4 = ssthresh = 3;

FlightSize = 5;

W4 < FlightSize
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Fast Retransmit and Fast Recovery (cont’d)

For a long time, the reference TCP implementation has been TCP
Reno first deployed in the 4.3BSD-Reno

Later it was found that TCP Reno has serious performance problems
when multiple segments in the same window are lost

Since only 1 of the lost segments can be recovered by each invocation
of the fast retransmit algorithm, the rest are often recovered using
slow start after a usually lengthy retransmission timeout
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Fast Retransmit and Fast Recovery (cont’d)

TCP NewReno is a modification of the basic TCP Reno
implementation and incorporates slow start, congestion avoidance,
and fast retransmit with modified fast recovery

In TCP Reno (RFC 2581), the reception of a partial ACK takes the
sender out of fast recovery

Partial ACK – an ACK that acknowledges some but not all of the
segments sent before fast retransmit
Full ACK – an ACK that acknowledges all of the segments sent before
fast retransmit

In TCP NewReno (RFC 3782), the sender stays in fast recovery until
either all of the segments outstanding by the time fast recovery was
entered are acknowledged or the retransmission timer expires
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Fast Retransmit and Fast Recovery (cont’d)

TCP Reno vs. TCP NewReno (see RFC 3782 for details)

1
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partial
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     10
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11 12

     11           12
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partial
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W1 = 6

W2 = W1
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4

6

3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

RTO

congestion avoidance;
ACK without delay

CA

FR

SS

FlightSize = 6;

ssthresh = 6/2 = 3;

W3 = 3 + 3 = 6

W4 = ssthresh = 3;

FlightSize = 5;

W4 < FlightSize

congestion avoidance;
ACK without delay

9

CA

FR

CA6

W1 = 6

W2 = W1

FlightSize = 6;

ssthresh = 6/2 = 3;

W3 = 3 + 3 = 6

W5 = 6 + 1 = 7

FlightSize = 2;

W6 = ssthresh = 3

3 4 5 6 7 8 9 10

ssthresh = 3;

W5 = 1

13

partial

8

13 14
7

3 4 5 6 7 8 9 10

W6 = 1 + 1 = 2

duplicate

full
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Fast Retransmit and Fast Recovery (cont’d)

Every time a segment loss is encountered (regardless of the way it is
detected), TCP Tahoe drops the cwnd to 1 full-sized segment and
enters the slow start phase

TCP Tahoe TCP Reno
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Fast Retransmit and Fast Recovery (cont’d)

TCP Reno, TCP NewReno, and TCP SACK provide similar
performance in the presence of uncorrelated packet losses
(when losses are predominantly single-packet losses)

TCP NewReno TCP SACK
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Fast Retransmit and Fast Recovery (cont’d)

Nowadays, TCP NewReno and TCP SACK are the most widely used
TCP implementations

Algorithm

Tahoe Reno

TCP implementation

Slow start Yes Yes

Congestion avoidance Yes Yes

Fast retransmit Yes Yes

Fast recovery Yes

NewReno

Yes

Yes

Yes

Modified

SACK

Yes

Yes

Enhanced

Enhanced

Acknowledgements Cumulative 
only

Cumulative 
only

Cumulative 
only

Cumulative 
and 
selective

Karn’s algorithm Yes Yes Yes Yes

Initial window Yes Yes Yes Yes
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Outline
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Fast retransmit and fast recovery

7 LEDBAT
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LEDBAT

Low Extra Delay Background Transport (LEDBAT) – a way to
transfer data on the Internet quickly without clogging the network

LEDBAT works as follows (RFC 6817):
1 Performs one-way delay measurements to estimate queueing delay
2 When the estimated queueing delay is less than a predetermined target,

infers that the network is not yet congested and increases its sending
rate to utilize any spare capacity in the network

3 When the estimated queueing delay becomes greater than the
predetermined target, decreases its sending rate as a response to
potential congestion in the network

LEDBAT can be used with

TCP
Datagram Congestion Control Protocol (DCCP)
Appropriate extensions built on top of UDP
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LEDBAT (cont’d)

Congestion control in BitTorrent:
uTorrent Transport Protocol (uTP)
TCP
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LEDBAT (cont’d)

The motivation for uTP is for BitTorrent clients to not disrupt
internet connections, while still utilizing the unused bandwidth fully
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LEDBAT (cont’d)

Today, uTP controls a large fraction of BitTorrent’s bytes and
packets traversed over the Internet
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