
Flow Control

Roman Dunaytsev

The Bonch-Bruevich Saint-Petersburg
State University of Telecommunications

roman.dunaytsev@spbgut.ru

Lecture № 8

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 2 / 66

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 3 / 66

Introduction

Flow control – a technique for assuring that a transmitting entity
does not overload a receiving entity with inappropriate amount of
data

The receiving entity typically allocates a receive buffer of some
maximum size for a transfer
When data are received, the receiving entity must do a certain amount
of processing before passing the data to the higher layer
The sender and the receiver may operate at different speeds
In the absence of flow control, the receive buffer may fill up and
overflow while the receiver is processing previously received data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 4 / 66

Introduction (cont’d)

Flow control refers to the regulating of the rate of data flow from
one device to another so that the receiver has enough time to
consume the data in its receive buffer, before it overflows

If the receiver does not have enough resources (CPU power, buffer
space, etc.) to process data as fast as the sender transmits them,
mechanisms to slow down the sender are useful
Otherwise, the receiver would have to drop data, causing the sender to
retransmit them and to waste further local and network resources

Flow control as matching the transcription speed of a typist with the
dictation rate of an author

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 5 / 66

Introduction (cont’d)

Flow control should be distinguished from congestion control

In congestion control, it is not the receiver but intermediate systems
that need to be protected against overloading

Congestion control is relevant to multihop networks, where end systems
(hosts) are connected by a series of intermediate systems (e.g., routers)

Flow control – prevents the sender from overloading the receiver

Congestion control – prevents the sender from overloading the
network

Host Host

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 6 / 66

Introduction (cont’d)

At the same time, flow control is tightly linked with congestion
control, error control, and quality of service (QoS) provisioning

If the traffic is overcontrolled, the throughput decreases and the data
transfer delay will become excessive

It is essential for flow control to provide a good compromise between:

High throughput
High resource utilization
Low control overhead

Flow control synchronizes different processing speeds of senders
and receivers

It allows a receiver running on a lower speed to accept data from a
sender using a higher speed, without being overloaded

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 7 / 66

Introduction (cont’d)

2 types of control systems :

Open-loop control systems
Closed-loop control systems

Open-loop control systems – do not have a feedback loop and,
thus, are not self-correcting

Closed-loop control systems – use a feedback loop

When the characteristics of a network path and a receiver are known
a priori and are relatively static, open-loop flow control can be used
to control the sender transmission, without requiring a feedback loop
for adjustment

In many cases, estimating the rate a priori can be extremely difficult

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 8 / 66

Introduction (cont’d)

In open-loop flow control, the rate is negotiated with the receiver
before the flow begins

Negotiation with the receiver is, of course, feedback, but it generally
happens once, after which the flow control is truly open-loop
E.g.: ATM CBR (Constant Bit Rate), VBR (Variable Bit Rate), and
UBR (Unspecified Bit Rate) services

Closed-loop flow control relies on feedback information from the
receiver to adjust its sending rate

Closed-loop flow control is appropriate when the sender has little
knowledge about the receiver
E.g.: ATM ABR (Available Bit Rate) service

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 9 / 66

Introduction (cont’d)

Feedback control loop – allows the sender to transmit based on
the changing ability for the receiver to accept data

Closed-loop flow control allows to use the available resources more
efficiently, which in turn reduces congestion and data losses

2 key elements of closed-loop flow control :

Signaling system
Response system

Signaling system – provides the sender with information about the
available resources at the receiver

Response system – determines the sender’s reaction to flow control
signals

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 10 / 66

Introduction (cont’d)

Signaling systems can vary in:

Accuracy (number of distinguishable states of receiver resource
utilization)
Update frequency
Signaling path (in-band or out-of-band)
Relationship to other mechanisms (e.g., Stop-and-Wait or
sliding-window ARQ)

In-band signaling – the sending of data and control information in
the same frequency band/circuit/channel/connection/type of PDUs,
as used for data transfer

Out-of-band signaling – the exchange of control information in a
separate frequency band/circuit/channel/connection/type of PDUs

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 11 / 66

Introduction (cont’d)

Flow control can take place at various levels:

End-to-end – protects the destination from overflow
Hop level – protects individual links and buffers from overflow
The further subdivision (entry-to-exit, etc.) depends on a given
technology/architecture/etc.

2 types of flow control :

Hardware flow control
Software flow control

Hardware flow control – uses dedicated pins/circuits for signaling

Aka RTS/CTS (Request To Send/Clear To Send) flow control
This is out-of-band signaling, since data and flow control signals do
not share the same path

Software flow control – uses control characters or PDUs to return
control (feedback) information to the other side

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 12 / 66

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 13 / 66

ON/OFF

ON/OFF flow control – relies on 2 control signals: ON and OFF

When the receiver senses that it can no longer accept incoming data, it
sends an OFF signal to the sender, which causes the latter to stop
transmitting
Once the receiver has consumed enough of the data in its receive buffer
so that it can receive more, it sends an ON signal to the sender,
causing it to resume transmission

The receiver distinguishes only 2 states:

READY to accept data
NOT READY to accept data

Works well if the propagation delay is small, otherwise the sender can
overrun the receiver

Examples of ON/OFF flow control:

RTS/CTS (hardware flow control, out-of-band signaling)
XON/XOFF (software flow control, in-band signaling)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 14 / 66

ON/OFF (cont’d)

RTS/CTS – hardware ON/OFF flow control and can be found in

RS-232 between Data Terminal Equipment (DTE) and Data
Circuit-terminating Equipment (DCE)

1 When a DTE wants to send data to the local DCE, it turns RTS on
2 If the DCE is ready to accept data, it answers by turning CTS on
3 The DTE transmits data over the TD (Transmit Data) circuit to the

local DCE
4 As soon as the DCE turns the CTS signal off, the DTE must stop

transmission

DTE
(computer)

TD

RD

RTS

CTS

DCD

DTR

DSR

RI

DCE
(modem)

TD

RD

RTS

CTS

DCD

DTR

DSR

RI

1

2

3

DCE
(modem)

TD

RD

RTS

CTS

DCD

DTR

DSR

RI

DTE
(computer)

TD

RD

RTS

CTS

DCD

DTR

DSR

RI

PSTN

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 15 / 66

ON/OFF (cont’d)

XON/XOFF – software ON/OFF flow control

The ’X’ stands for transmitter, so XON and XOFF are control
commands used to turn the sender on and off, respectively

This is in-band signaling, since it inserts control commands directly
into the data stream

The sender, upon getting a XON command, transmits data at an
arbitrary rate until it receives a XOFF command

After this, the sender does not transmit any data until a XON
command is again obtained

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 16 / 66

ON/OFF (cont’d)

XON/XOFF flow control was employed in DDS

Digital Data System (DDS) – the U.S. digital transmission network
that was established in 1974 by AT&T and provided full-duplex data
channels at transmission rates between 2.4 and 56 kbit/s

It used 2 characters of the ASCII (American Standard Code for
Information Interchange) character set

The DC1 (0x11) character is used for XON and the DC3 (0x13)
character is used for XOFF
When the sender receives an XOFF character, it must stop its
transmission, and it may resume as soon as XON character is received

This is in-band signaling
The occurrence of these characters in the payload must be prevented
by using proper escaping mechanisms (character stuffing)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 17 / 66

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 18 / 66

PAUSE

The full-duplex mode defined by the IEEE 802.3x includes an
optional flow control operation implemented by a special frame
called PAUSE frame

This is out-of-band signaling

It is defined only for use across a single full-duplex link

I.e., it is hop-level flow control
It cannot be used on a shared (half-duplex) LAN, nor does it operate
through switches

PAUSE may be used to control frame flow between directly
connected:

Workstation/workstation (i.e., a simple, 2-station network)
Workstation/switch
Switch/switch

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 19 / 66

PAUSE (cont’d)

Flow control in Ethernet
Rx PAUSE, Rx/Tx PAUSE, Tx PAUSE = PAUSE frame receipt, receipt
and transmission, transmission is enabled, respectively

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 20 / 66

PAUSE (cont’d)

A device can prevent buffer overflow by sending PAUSE frames to its
partner on the full-duplex link

The reception of the PAUSE frame by the partner will cause it to stop
sending data frames for a given period of time

If an additional PAUSE frame arrives before the current PAUSE time
has expired, then its parameter replaces the current PAUSE time

Thus, a PAUSE frame with parameter 0 allows traffic to resume
immediately

During the PAUSE state the station is allowed to send only PAUSE
frames, allowing 2 stations to pause each other at the same time

After completion of the suspension period, the partner resumes its
normal packet transmission

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 21 / 66

PAUSE (cont’d)

Destination address, 6 bytes

Specifies either the unique destination address of the station to be
paused or the multicast address 01-80-C2-00-00-01
This multicast address has been reserved by the IEEE 802.3 for use in
PAUSE frames

Ethertype (aka Type), 2 bytes

Contains the reserved value of 0x8808 used for all MAC control frames

Preamble
Destination

address
Source
address

MAC
control

FCS

8 bytes 6 bytes 6 bytes 2 bytes 4 bytes

Ethertype

46 bytes

0 1 -80-C2-00-00-01 is multicast, since I/G = 1

The destination MAC address of FF-FF-FF-FF-FF-FF is broadcast

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 22 / 66

PAUSE (cont’d)

MAC control opcode, 2 bytes
Contains the control operation code (aka opcode) for PAUSE – 0x0001

MAC control parameter, 2 bytes
Specifies the duration of the PAUSE event (from 0x0000 to 0xFFFF) in
units of 512-bit times
Bit time = the amount of time required to send 1 bit on the network

E.g., 10 Mbit/s: 0 - 3355 ms; 100 Mbit/s: 0 - 335.5 ms

Reserved, 42 bytes
Padded with ’0’s to keep the minimum length of 46 bytes

Preamble
Destination

address
Source
address

MAC
control

FCSEthertype

01-80-C2-00-00-01 0x8808

MAC control
opcode

MAC control
parameter

Reserved

46 bytes

2 bytes 2 bytes 42 bytes

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 23 / 66

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 24 / 66

Stop-and-Wait

Stop-and-Wait flow control is based on Stop-and-Wait ARQ:

The sender transmits a PDU
After the receiver gets this PDU, it indicates its readiness to accept
another PDU by sending back a credit (aka a permit or an ACK)
The sender must wait until it receives the credit before sending the
next PDU
Thus, only 1 PDU at a time can be in transit
The receiver can thus stop the flow of data simply by delaying a credit

Stop-and-Wait is used in Type 3 LLC service

I.e., acknowledged connectionless service

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 25 / 66

Stop-and-Wait (cont’d)

Benefits of Stop-and-Wait flow control:

Simplicity and ease of implementation

Shortcomings of Stop-and-Wait flow control:

The throughput and link utilization are generally low

I.e., even though the receiver can process many PDUs at a time, it
can not get them together due to the limit of maximum 1 PDU

In this case, the link remains unnecessarily idle

One way to improve the link efficiency is to allow more than 1 PDU
to be transmitted before a credit can be expected from the receiver

Aka sliding-window flow control (similar to continuous ARQ)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 26 / 66

Stop-and-Wait (cont’d)

Processing time – due to the finite processing power of the devices

Sender Receiver

Last bit
Transmission time = PDU size / data rate

Propagation time = distance / signal velocity

Processing time

Transmission time = credit size / data rate

Propagation time = distance / signal velocity

Processing time

First bit

First bit

First bit

Last bit

...

...

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 27 / 66

Stop-and-Wait (cont’d)

Transmission time – due to a finite data rate of a link

Transmission time = PDU size (in bits) / data rate (in bits/s)
Typically, the transmission time for a credit is considered to be 0
This is because a credit is assumed to be very small in size resulting in
a negligible value of the transmission time
Similar reason could be used for 0 processing time for a credit

Propagation time – due to a finite velocity of signal propagation

The speed of light in vacuum is about 300,000 km/s
The velocity of signal propagation in optical fiber and coaxial copper
cable is about 70% of the speed of light in vacuum (∼ 200, 000 km/s)
The velocity of radio waves is close to the speed of light in vacuum

Propagation time = distance (in m) / signal velocity (in m/s)
E.g., a USA coast-to-coast path has the propagation delay of ∼ 25 ms

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 28 / 66

Stop-and-Wait (cont’d)

For very high data rates and/or long distances between the sender
and receiver (e.g., WAN), Stop-and-Wait flow control provides
inefficient link utilization

For very small data rates and/or short distances between the
sender and receiver (e.g., LAN), Stop-and-Wait flow control provides
approximately the same link utilization as sliding-window flow control

Sender Receiver

Last bit

Ttr

Tpr

Transmission time < propagation time
(high data rate and/or long distance)

Sender Receiver

Last bit

Tpr

Ttr

Transmission time > propagation time
(small data rate and/or short distance)

First bit

First bit

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 29 / 66

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 30 / 66

Sliding-Window

Bit length of a link – the number of bits present on the link when
a stream of bits fully occupies the link

Bit length of a link = data rate (in bits/s) * propagation time
(in seconds)

In situations where the bit length of the link is greater than the PDU
length, Stop-and-Wait flow control is highly inefficient

Efficiency can be significantly improved by allowing multiple PDUs to
be sent back-to-back at once

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 31 / 66

Sliding-Window (cont’d)

Sliding-window is the generalization of Stop-and-Wait to more
than 1 PDU

I.e., the receiver allows the sender to send up to a certain number of
PDUs without getting further credit or ACK
This maximum number of PDUs allowed to be transmitted without
receiving a credit is said to be the maximum window size

Variants of sliding-window flow control:

Credits issued at the end of windows
Credits (ACKs) issued after each PDU
Credit mechanisms allowing variable-size windows
etc.

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 32 / 66

Sliding-Window (cont’d)

Example:
Let the receiver specify the maximum window size of 4 PDUs
Suppose that PDUs can be numbered from 0 through 7
PDUs 0, 1, 2, 3 have been sent and successfully received
After the processing of the received PDUs is complete, the receiver
sends an ACK for all these PDUs
On receiving this ACK, the sender is permitted to send PDUs 4, 5, 6, 7

Sender Receiver

0

3

4

7

ACK

0 1 2 3 4 5 6 7 0

Maximum window size W=4

0 1 2 3 4 5 6 7 0

0

1

2

34

5

6
7

Maximum window size W=40

1

2

34

5

6
7

...

...

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 33 / 66

Sliding-Window (cont’d)

Some implementations also allow a system to cut off the flow of
PDUs from the other side by sending a Receive Not Ready (RNR)
command, which acknowledges former PDUs but forbids transfer of
future PDUs

As soon as the system can accept new data, it sends a Receive
Ready (RR) command

This RR cancels the effect of the previous RNR

It also contains the sequence number of the next expected PDUs

E.g., the High-level Data Link Control (HDLC) protocol uses
special supervisory frames (S-frames) for this purpose: the RR and
RNR frames

Since user data are transmitted in another type of PDUs (I-frames),
this is out-of-band signaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 34 / 66

Sliding-Window (cont’d)

Credits issued at the end of windows
Data rate in bits/s = R
Data PDU transmission time = Ttr ,d

Credit transmission time = Ttr ,c

Propagation delay = Tpr

Window size in PDUs = W

Reffective =
W ∗ Ttr ,d

W ∗ Ttr ,d + Ttr ,c + 2 ∗ Tpr
∗ R

Ttr,d

WTtr,d

Ttr,c

Tpr

Tpr

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 35 / 66

Sliding-Window (cont’d)

Credits issued after each PDU, advancing the window by 1
Data rate in bits/s = R
Data PDU transmission time = Ttr ,d

Credit transmission time = Ttr ,c

Propagation delay = Tpr

Window size in PDUs = W

Reffective = min

(
W ∗ Ttr ,d

Ttr ,d + Ttr ,c + 2 ∗ Tpr
∗ R,R

)

W = 3 W = 10

n
u

m
e

ra
to

r

d
e

n
o

m
in

a
to

r

n
u

m
e

ra
to

r

d
e

n
o

m
in

a
to

r

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 36 / 66

Sliding-Window (cont’d)

Variable-size windows
More flexibility is obtained if variable-size windows are used and
adjusted according to buffer occupancy
It can be implemented by including a ’window size’ field in credits to
specify the number of PDUs or bytes allowed to be sent
This type of flow control is widely used at the transport layer (e.g., ISO
Transport Protocol (TP), IETF TCP)

0

2

3

7

0-2 ACKed

0 1 2 3 4 5 6 7 8

W=3

9 10 11

W=3

W=5

3-7 ACKed W=2

0 1 2 3 4 5 6 7 8

W=5

9 10 11

0 1 2 3 4 5 6 7 8

W=2

9 10 11 8
9

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 37 / 66

Outline

1 Introduction

2 ON/OFF

3 PAUSE

4 Stop-and-Wait

5 Sliding-window

6 Flow control in TCP
SWS
BDP
Scaling

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 38 / 66

Flow Control in TCP

The receiving TCP returns 2 parameters to the sending TCP:

Acknowledgement (ACK) number
Window size (aka the receive window, rwnd)

The interpretation is ’I am ready to receive bytes with sequence
numbers ACK, ACK+1, ACK+2, . . . , ACK+rwnd−1’

Since ACKs can be piggybacked onto data segments, TCP uses
in-band signaling

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

0 7 15 23 31

Source port Destination port

U A P R S FC E

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 39 / 66

Flow Control in TCP (cont’d)

During connection establishment each host allocates a receive buffer
of some size to this connection

Thus, the rwnd defines the amount of free room in the receive buffer

Since TCP is not permitted to overflow the allocated buffer, the
sender must not transmit more data than it was defined by the
receiver

Because the free room at the receive buffer changes over time, the
rwnd value dynamically changes during lifetime of the connection

The maximum value of the rwnd (without scaling) is
216 − 1 = 65, 535 bytes

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 40 / 66

Flow Control in TCP (cont’d)

To utilize the network bandwidth effectively, TCP uses sliding-window
flow control to send multiple segments at a time before it stops to
wait for an ACK

In high-speed networks with a large distance between the sender and
receiver, this approach is far more efficient than sending 1 segment at
a time and waiting for the ACK

At any time, window = min (rwnd, cwnd)

rwnd (receive window) is a receiver-side limit on the amount of
outstanding data

cwnd (congestion window) is a sender-side limit on the amount of
outstanding data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 41 / 66

Flow Control in TCP (cont’d)

Note that TCP operates in a byte-stream fashion, not in segments

But for simplicity, we consider TCP operation in terms of ’segments’

The maximum amount of data that can be placed into the segment is
limited by the Maximum Segment Size (MSS)

For IPv4, MSS = MTU – 40 bytes
Typically, the MSS is equal to 1460 bytes

A full-sized segment - a segment that contains the maximum number
of data

Already sent and
acknowledged

Sliding window (7 segments)

2 3 65 1211107 8 941 13

Sent but not yet
acknowledged

Not usable

Moving direction
(this way only!)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 42 / 66

Flow Control in TCP (cont’d)

If there is no free room in the receive buffer, the receiver sends an
ACK with rwnd=0

But even in this case, the sender will periodically transmit a probe
segment
Such a segment (from host A to host B) generally contains
Seq(A) = ACK(B) − 1 with 1 (or more) byte(s) of garbage data
The receiver drops this segment, but since it has to acknowledge its
reception, in the ACK segment it can define a new value of the rwnd
Eventually the buffer will begin to empty and a new ACK will contain a
non-zero value of the rwnd
Probing zero window prevents the sender from blocking

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 43 / 66

Flow Control in TCP (cont’d)

Because the free room at the receive buffer changes over time, the
rwnd value dynamically changes during lifetime of the connection

Example 1

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 44 / 66

Flow Control in TCP (cont’d)

Example 1: the time-sequence (Stevens) graph

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 45 / 66

Flow Control in TCP (cont’d)

When the receive buffer fills completely, the receiver sends an ACK
that contains a zero window advertisement (rwnd=0)

Example 2

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 46 / 66

Flow Control in TCP (cont’d)

Example 2: the time-sequence graph with denoted probe segments

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 47 / 66

Flow Control in TCP (cont’d)

Example 2: the SYN segment

No Window Scale option, rwnd = 65,535 bytes

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 48 / 66

Flow Control in TCP (cont’d)

At 1.201527 s of the TCP connection, the data flow was interrupted
from the receiver side by setting rwnd = 0 bytes

At 3.895820 s of the TCP connection (almost after 2.7 s), the data
flow was resumed by announcing rwnd = 4600 bytes

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 49 / 66

Flow Control in TCP (cont’d)

The receiver’s ZeroWindow segment
rwnd = 0 bytes
ACK = 1051036 (relative)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 50 / 66

Flow Control in TCP (cont’d)

The sender’s Keep-Alive segment (Seq = ACK − 1 = 1051035)
To confirm that the idle connection is still active, the sender sends a
probe segment designed to elicit a response from the receiver

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 51 / 66

SWS

Consider what can happen if a receiving application process reads
incoming data 1 byte (or a few in the general case) at a time:

1 If the sending process generates data quickly, the sending TCP will
transmit a window full of data segments

2 Eventually, the sender will receive an ACK that specifies that no
additional space remains in the receive buffer (rwnd=0)

3 When the receiving process reads 1 byte of data from a full buffer, 1
byte of space becomes available

4 Since space becomes available in its buffer, the receiving TCP generates
an ACK that uses the Window field to inform the sender (rwnd=1)

5 When the sending TCP learns that space is available, it responds by
transmitting a segment that contains 1 byte of data

Although single-byte window advertisements work correctly to keep
the receive buffer filled, they result in a series of tiny data segments

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 52 / 66

SWS (cont’d)

What is wrong with small data segments?

The sending TCP must compose a segment that contains 1 byte of
data, place the segment in an IP packet, and transmit the result

When the receiving application reads another byte, TCP generates
another ACK, which causes the sender to transmit another segment
that contains 1 byte of data and so on

The resulting interaction can reach a steady state in which TCP
sends a separate segment for each byte of data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 53 / 66

SWS (cont’d)

The transmission of small segments consumes unnecessary network
bandwidth because each IP packet carries only 1 byte of data

Unacceptable protocol overhead (IP+TCP headers/user data): 40/1
(tiny segments) vs. 40/1460 (full-sized segments)

Moreover, transferring small segments introduces unnecessary
computational overhead at the hosts and intermediate systems along
the path

Due to processing segments and recomputing their checksums/CRCs

The above example describes how small segments result when a
receiver advertises a small window

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 54 / 66

SWS (cont’d)

However, a sender can also cause each segment to contain a small
amount of data:

Firstly, TCP can create and transmit a separate segment each time the
application process generates 1 byte of data
TCP can also send a small segment if the application process generates
data in fixed-sized blocks of N bytes, and the sending TCP extracts
data from the buffer in maximum segment sized blocks, M, where
M < N, so the remaining block in the send buffer can be small

Known as silly window syndrome, the problem of tiny segments
appeared in early TCP implementations

Silly window syndrome (SWS) – each ACK advertises a small
amount of space available and each segment carries a small amount
of data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 55 / 66

SWS (cont’d)

TCP specification (RFC 1122) now includes heuristics that prevent
silly window syndrome:

One heuristic used on the sending host avoids transmitting small
amount of data in each segment
Another heuristic used on the receiving host avoids sending small
increments in window advertisements that can trigger small data
packets

In practice, TCP software must contain both sender and receiver silly
window avoidance code

Since TCP connections are full-duplex

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 56 / 66

SWS (cont’d)

Receive-side SWS avoidance

The receive-side SWS avoidance algorithm prevents small window
advertisements in case where a receiving application process extracts
data bytes slowly

E.g., when the receive buffer fills completely, the receiver sends an ACK
that contains a zero window advertisement
As the receiving application extracts bytes from the buffer, the
receiving TCP computes the newly available space in the buffer

Instead of sending a window advertisement immediately, the receiver
waits until the available space reaches either 50% of the total
buffer size or a maximum-sized segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 57 / 66

SWS (cont’d)

Send-side SWS avoidance

To avoid sending small segments, a sending TCP must allow the
sending application to make multiple calls to write, and must collect
the data transferred in each call before transmitting it in a single,
large segment

This technique is known as clumping

How long should TCP wait before transmitting data?

On the one hand, if TCP waits too long, the application experiences
large delays

A fixed delay is not optimal for all application

On the other hand, if TCP does not wait long enough, segments will
be small and throughput will be low

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 58 / 66

SWS (cont’d)

Nagle algorithm

Named after its inventor, John Nagle

When a sending application generates additional data to be sent over
a connection for which previous data has been transmitted but not
yet acknowledged, place the new data in the send buffer as usual, but
do not send additional segments until there is sufficient data to fill a
maximum-sized segment

For IPv4, MSS = MTU – 40 bytes
For IPv6, MSS = MTU – 60 bytes

If still waiting to send when an ACK arrives, send all data that has
accumulated in the send buffer

I.e., TCP uses the arrival of an ACK to trigger the transmission of
accumulated data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 59 / 66

SWS (cont’d)

The Nagle algorithm is self-clocking:

If an application process generates data 1 byte at a time, TCP will
send the first byte immediately
Until an ACK arrives or the number of accumulated bytes is less than
the MSS, TCP will accumulate additional bytes in its send buffer

The Nagle algorithm adapts to arbitrary combinations of the network
and application speeds:

If the application process is fast compared to the network (i.e., a bulk
data transfer), successive segments will contain many bytes
If the application process is slow compared to the network (e.g., a user
typing on a keyboard), small segments will be sent without long delay

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 60 / 66

BDP

The ideal TCP connection rapidly increases its sliding window and
keeps the path between the sender and receiver full of packets at any
time

Keeping the path full of packets requires both rwnd and cwnd to
reach the capacity of the transmission path (’pipe’) at once

Since window = min (rwnd, cwnd)

Capacity = bandwidth (in bits/s) * Round-Trip Time (in sec.)

Aka the bandwidth-delay product (BDP) and is measured in

bits/bytes/packets/etc.

The BDP is twice as large as the bit length of the transmission path,
since instead of the one-way propagation time we use the two-way
propagation delay – the Round-Trip Time (RTT)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 61 / 66

BDP (cont’d)

For long, modern, high-speed links, the BDP can be much greater
than the maximum TCP receive window size of 65,535 bytes

The maximum throughput of a TCP connection is limited to
rwnd/RTT

The upper bound on maximum link utilization is the maximum
window size divided by the BDP

Link utilization = [rwnd / bandwidth-delay product] * 100%

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 62 / 66

BDP (cont’d)

Consider a 1000 km fiber link has a 5 ms one-way delay

The velocity of signal propagation in optical fiber is about 200,000
km/s

The RTT (i.e., the two-way propagation delay) = 2 ∗ 5 ms = 10 ms

When operating at 10 Gbits/s, the BDP = 100 ∗ 106 bits or
12.5 ∗ 106 bytes

The upper bound on the link utilization is

rwnd

BDP
∗ 100% =

65, 535

12.5 ∗ 106
∗ 100% = 0.52%

To improve efficiency, the receive window size should be increased

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 63 / 66

Scaling

RFC 1323 ’TCP Extensions for High Performance’

It defines a new extension for TCP – TCP Window Scale option –

that permits significantly larger (up to 1 GB) windows to be advertised
and utilized

Both sides must send Window Scale options in their SYN segments to
enable window scaling in either direction

A Window Scale option in a segment without SYN=1 should be ignored

This negotiation has 2 purposes:

To indicate that the TCP entity is prepared to do both send and
receive window scaling
To communicate a scale factor to be applied to its receive window

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 64 / 66

Scaling (cont’d)

The shift count indicates how many bits to the left to shift the value
in the Window field, to arrive at the actual window size

For instance:

A shift count of 0 multiplies the stated window size by 1 (20 = 1), so
no scaling performed
A shift count of 5 multiplies the stated window size by 32 (25 = 32)

The shift count is limited to 14, which allows the rwnd of

65, 535 ∗ 214 = 1, 073, 725, 440 bytes ≈ 1 GB

The 3-byte TCP Window Scale option:

Kind = 3 Length = 3 Shift count

1 byte 1 byte 1 byte

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 65 / 66

Scaling (cont’d)

The maximum rwnd size (by default):

Microsoft Windows XP: 65,535 bytes
Microsoft Windows 7: 65, 535 ∗ 28 = 16, 776, 960 bytes

TCP optimizers and tweakers:

SG TCP Optimizer (freeware): www.speedguide.net/downloads.php
Ashampoo WinOptimizer (commercial)
Auslogics BootSpeed (commercial)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 8 66 / 66

https://www.speedguide.net/downloads.php

	Introduction
	ON/OFF
	PAUSE
	Stop-and-Wait
	Sliding-window
	Flow control in TCP
	SWS
	BDP
	Scaling

