
Transport Layer Protocols

Roman Dunaytsev

The Bonch-Bruevich Saint-Petersburg
State University of Telecommunications

roman.dunaytsev@spbgut.ru

Lecture № 7



Outline

1 Transport layer
Multiplexing/demultiplexing
Port numbers

2 UDP
Overview
Datagram structure

3 TCP
Overview
Segment structure
Sequence numbers and ACKs
Connection setup
Data transfer
Connection teardown
Summary

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 2 / 61



Outline

1 Transport layer
Multiplexing/demultiplexing
Port numbers

2 UDP
Overview
Datagram structure

3 TCP
Overview
Segment structure
Sequence numbers and ACKs
Connection setup
Data transfer
Connection teardown
Summary

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 3 / 61



Transport Layer

The transport layer
Resides between the application and internet layers
Provides an end-to-end data transfer service for application processes
Uses the services offered by the underlying internet layer
Hides the details of underlying networking from the application layer

Application layer

Transport layer

Internet layer

data

Tr-h

Tr-hIP-h

data

data

Data stream / 
Message

TCP segment /
UDP datagram

IP packet

PDU names Encapsulation / Decapsulation

Link layer L-trailer (if any)Tr-hL-header dataIP-hLink frame

Physical layer Bits 11010110001010101001010100101001101010010

TCP/IP stack

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 4 / 61



Transport Layer (cont’d)

Transport layer protocols are end-to-end protocols
They are only implemented at end systems (aka hosts)
Therefore, also referred to as host-to-host protocols

End system End system

PC

Application

Transport

Internet

Physical

Application

Transport

Internet

Physical

Internet

Link

Physical

Internet

Physical

Physical media Physical mediaPhysical media

Link Link Link

Intermediate 
system

Intermediate 
system

PCRouter Router

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 5 / 61



Multiplexing/Demultiplexing

Multiple application processes are running on a host

How to deliver data to a given application process?
IP provides host-to-host packets delivery but does not know how to
deliver packets to a specific application process on the host

Each IP packet header has:
Source and destination IP addresses
Protocol field which specifies the higher-layer protocol
(e.g., UDP = 17 = 0x11, TCP = 6 = 0x06)

IP demultiplexes data from incoming packets between the transport
layer protocols (UDP and TCP) based on the Protocol field value

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 6 / 61



Multiplexing/Demultiplexing (cont’d)

The values of the Protocol field are maintained by the Internet
Assigned Numbers Authority (IANA)

Online database is available at
www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Source IP address

Header checksum

IHL Type of service

0 7 15 23 31

Total length

Data

Version

Identification Flags Fragment offset

ProtocolTime to live

Destination IP address

Options (if any) Padding

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 7 / 61

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml


Multiplexing/Demultiplexing (cont’d)

The transport layer protocols add a mechanism for the application
process identification – port numbers

The combination of the following values uniquely identifies a flow in
the Internet:

Source and destination IP addresses
Source and destination port numbers
Protocol field value

E.g., a TCP connection:
130.230.52.139:1080, 130.230.137.61:80, TCP

Demultiplexing – delivering incoming data to certain higher-layer
entities

Multiplexing – gathering data from multiple higher-layer entities,
enveloping data with headers (later used for demultiplexing), and
passing them to the lower layer

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 8 / 61



Multiplexing/Demultiplexing (cont’d)

The transport layer protocols (UDP and TCP) use port numbers to
identify application processes

Transport
layer

Internet
layer

UDP
datagrams

TCP
segments

byte-
streams

messa-
ges

Demultiplex 
based on port 

numbers in 
UDP/TCP 
headers

Demultiplex 
based on the 
Protocol field 
value in IP 
headers

IP

UDP TCP

App. 
process

App. 
process

App. 
process

App. 
process

... ...

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 9 / 61



Port Numbers

There are 216 = 65, 536 port numbers per transport layer protocol in
each host

I.e., 65,536 UDP ports and 65,536 TCP ports

The values of port numbers are also maintained by the IANA
Online database is available at
www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xhtml

3 ranges of port numbers :
Well-known ports (0 - 1023)
Registered ports (1024 - 49,151)
Dynamic and/or private ports (49,152 - 65,535)

The IANA does not enforce adherence in use of port numbers to these
assignments; it is simply a set of recommended uses

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 10 / 61

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml


Port Numbers (cont’d)

For the purpose of providing services to unknown callers, a service
contact port should be preassigned

Similar to contact information of various authorities, companies, etc.

Contact ports used by server processes are called well-known ports
E.g., FTP = 20 (data) and 21 (control), Telnet = 23,
DNS = 53, HTTP = 80 (default) and 8080 (alternative)

Well-known port numbers are used by servers; other port numbers are
used by clients

Client processes on a host use different port numbers, while a server
process uses the same port number for all communication sessions

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 11 / 61



Port Numbers (cont’d)

Unless a client program explicitly requests a specific port number, the
port numbers used by a client process are ephemeral ports that are
assigned by the local system and are freed up when they are no longer
needed

Ephemeral ports are often assigned consecutively
Microsoft Windows operating systems use the range 1024 - 4999 for
their ephemeral port range

When the client process terminates, the ephemeral port is available for
reuse, although most operating systems will not reuse that port
number until the entire pool of ephemeral ports have been used

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 12 / 61



Outline

1 Transport layer
Multiplexing/demultiplexing
Port numbers

2 UDP
Overview
Datagram structure

3 TCP
Overview
Segment structure
Sequence numbers and ACKs
Connection setup
Data transfer
Connection teardown
Summary

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 13 / 61



UDP

User Datagram Protocol (UDP) – defined in RFC 768

Message-oriented
UDP can preserve message boundaries

Connectionless
Establishing a connection before sending data is not required
Each datagram is handled independently of others in a flow

Stateless
Neither the sender nor the receiver has an obligation to keep track of
the state of the communication session

Unreliable
Data may be lost or delivered out-of-order to an application process
UDP does not use ACKs and does not retransmit lost datagrams

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 14 / 61



UDP (cont’d)

UDP functions :
Multiplexing/demultiplexing
Error control (optional)

Thus, UDP adds very little to IP

Datagram integrity verification
IP computes checksum only for the IP header
UDP checksum applies to the entire UDP datagram plus a
pseudo header prefixed at the time of checksum computation

No flow or congestion control
UDP can send data as fast as desired
But it cannot guarantee their successful delivery

No feedback messages
UDP can be used for both unicast or multicast communications

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 15 / 61



UDP Datagram Structure

Source port and destination port, 16 bits each
Identify the sending and receiving application processes, respectively

Datagram length, 16 bits
Indicates the number of bytes in the UDP datagram (including the
header and data)

Checksum, 16 bits – similar to computing IP checksum except:
If the length of the datagram is not a multiple of 16 bits, the datagram
will be padded out with ’0’s to make it a multiple of 16 bits (actual
datagram is not modified and the pad is not transmitted)
UDP adds a pseudo header to the datagram when performing
checksum computation (only during checksum computation, the
pseudo header is not transmitted)

Source port Destination port

0 7 15 23 31

Datagram length Checksum

Data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 16 / 61



UDP Datagram Structure (cont’d)

The pseudo header is needed to ensure that the datagram has
indeed reached the correct destination host, the protocol type is
correct (UDP = 17), and the datagram length is also correct

It gives protection against misrouted UDP datagrams

Source IP address

0 7 15 23 31

Destination IP address

0 0 0 0 0 0 0 0 Protocol = 17 Datagram length

Source port Destination port

Datagram length Checksum

Data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 17 / 61



UDP Datagram Structure (cont’d)

If a datagram is found to be corrupted, it is simply discarded and the
source UDP entity is not notified

If a source host does not want to compute the checksum, the
checksum field should contain all ’0’s so that the destination host
knows that the checksum has not been computed

What if the source host does compute the checksum and finds that the
result is 0?
Then the checksum field should contain all ’1’s (another representation
of 0)

Source port Destination port

0 7 15 23 31

Datagram length Checksum

Data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 18 / 61



UDP Datagram Structure (cont’d)

A UDP datagram captured by Wireshark

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 19 / 61



Outline

1 Transport layer
Multiplexing/demultiplexing
Port numbers

2 UDP
Overview
Datagram structure

3 TCP
Overview
Segment structure
Sequence numbers and ACKs
Connection setup
Data transfer
Connection teardown
Summary

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 20 / 61



TCP

Transmission Control Protocol (TCP) – defined in a number of
RFCs (mainly in RFC 793, RFC 1122, and RFC 2581)

See RFC 4614 ’A Roadmap for Transmission Control Protocol (TCP)
Specification Documents’

Byte-stream-oriented
TCP considers data as an unstructured, but ordered, stream of bytes
Data are delivered in-order to an application process

Connection-oriented
A logical connection must be established before exchanging data

Stateful
Both sender and receiver keep track of the state of the session

Reliable
Each transmitted byte must be acknowledged by the receiving host
The sender retransmits, if necessary

Full-duplex
Bi-directional data flow over the same connection

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 21 / 61



TCP (cont’d)

TCP functions :
Multiplexing/demultiplexing
Ordered data transfer and data segmentation
Error control (mandatory)
Flow control
Congestion control

Thus, TCP adds a lot to IP
Error control

TCP checksum applies to the entire TCP segment plus a
pseudo header prefixed at the time of checksum computation
TCP triggers retransmission until the data are correctly and completely
received

Flow and congestion control
TCP regulates the rate at which the sending host transmits data

Feedback-based
Can be used for unicast communications only

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 22 / 61



TCP Segment Structure

A TCP segment consists of a TCP header followed by application data
(if any)

Sequence number

Acknowledgement number

Header
length Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

0 7 15 23 31

Source port Destination port

U A P R S FC E

Data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 23 / 61



TCP Segment Structure (cont’d)

Source port and destination port, 16 bits each
Identify the sending and receiving application processes, respectively

Sequence number, 32 bits
Identifies the position of the first data byte of this segment in the
sender’s byte stream (when the SYN bit is not set)
TCP assignees a sequence number to each transmitted byte
If the SYN bit is set to 1 (during the connection establishment phase),
this field indicates the initial sequence number (ISN) to be used in
the sender’s byte stream; the first data byte will be ISN+1
Both sides of a TCP connection randomly select their ISNs

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

0 7 15 23 31

Source port Destination port

U A P R S FC E

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 24 / 61



TCP Segment Structure (cont’d)

Data to send:
Unstructured stream of bytes

Byte Byte Byte Byte Byte Byte Byte Byte ...

Connection establishment phase (SYN = 1):
Sequence number = ISN, ISN ∈ [0, 232 − 1]

Data transfer phase (SYN = 0):
Ordered stream of bytes

ISN+1 ISN+2 ISN+3 ISN+4 ISN+5 ISN+6 ISN+7 ISN+8 ...

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 25 / 61



TCP Segment Structure (cont’d)

Acknowledgement number, 32 bits
If the ACK bit is set to 1, identifies the sequence number of the next
data byte that the sender expects to receive
Also indicates that the sender has successfully received all data up to
(but not including) this value
Once a connection is established the ACK bit is always on
If the ACK bit is not set (only during the connection setup phase), the
Acknowledgement number field is meaningless

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

0 7 15 23 31

Source port Destination port

U A P R S FC E

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 26 / 61



TCP Segment Structure (cont’d)

A TCP data segment containing 8 bytes of data (ISN = 0)

Sequence number = 1

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

Byte 1 Byte 2 Byte 3 Byte 4

Byte 5 Byte 6 Byte 7 Byte 8

A TCP acknowledgement (without data) for this data segment

Sequence number

Acknowledgement number = 9

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 27 / 61



TCP Segment Structure (cont’d)

Header length, 4 bits
Specifies the length of the TCP header in 32-bit words
It is needed since the Options field is of variable length
It indicates the beginning of the data area within the segment
The minimum value is 5 (20 bytes) and the maximum value is 15
(60 bytes)

Reserved, 4 bits
Not used, must be ’0’s

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

0 7 15 23 31

Source port Destination port

U A P R S FC E

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 28 / 61



TCP Segment Structure (cont’d)

TCP flags, 8 bits
Explicit Congestion Notification (ECN) support in TCP uses 2
bits that were previously defined as the Reserved field (RFC 3168)
CWR (Congestion Window Reduced)

Used by the sending host to indicate that it has received a TCP
segment with the ECE flag set to 1

ECE (ECN-Echo)
Used to indicate that a host is ECN-capable during the connection
establishment phase
Used to indicate that a TCP segment was received with the ECN field
in the IP header set to 11

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 29 / 61



TCP Segment Structure (cont’d)

ECN support in IP uses 2 bits of the Type of Service (ToS) field:
ECN-Capable Transport (ECT)

It is set by the source and indicates whether the transport connection
supports ECN

Congestion Experienced (CE)
It is set by a router and indicates that congestion has been encountered

ToS field

0 7 15 23 31
C
E

E
C
T

Source IP address

Header checksum

IHL Total lengthVersion

Identification Flags Fragment offset

ProtocolTime to live

Destination IP address

Options (if any) Padding

Data (TCP segment)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 30 / 61



TCP Segment Structure (cont’d)

Step 1: To avoid approaching congestion, the router sets CE=1 in the IP header

Sender ReceiverRouter

Step 2: To notify the sender, the receiver sets ECE=1 in the TCP header

Step 3: The sender reduces its rate and sets CWR=1 in the TCP header

Step 4: Upon receipt of CWR=1, the receiver sends subsequent segments with ECE=0

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 31 / 61



TCP Segment Structure (cont’d)

TCP flags :
URG (Urgent) – indicates that this segment contains urgent data
ACK – indicates that the Acknowledgement number field is valid
PSH (Push) – specifies that the receiving TCP entity should pass the
already received data to the application process immediately (e.g., for
delay-sensitive applications)
RST (Reset) – used to abort the connection
SYN – used to establish a TCP connection
FIN – used to terminate a TCP connection

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

0 7 15 23 31

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 32 / 61



TCP Segment Structure (cont’d)

Window, 16 bits
Specifies the number of bytes the sender of this segment is ready to
accept
Also referred to as the receive window (rwnd)

Checksum, 16 bits
Covers the header and data of the TCP segment to allow the receiver
to verify the integrity of the incoming TCP segment
The TCP checksum computation is similar to that in computing UDP
checksum

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

0 7 15 23 31

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 33 / 61



TCP Segment Structure (cont’d)

If the length of the segment is not a multiple of 16 bits, the segment
will be padded out with ’0’s to make it a multiple of 16 bits

The actual segment is not modified and the pad is not transmitted

TCP adds a pseudo header to the segment when performing checksum
computation (only during checksum computation, the pseudo header
is not transmitted)

It gives protection against misrouted TCP segments

If a segment is found to be corrupted, it is discarded

But in contrast to UDP, the source TCP entity will be notified (by the
lack of the ACK for this segment)

Source IP address

0 7 15 23 31

Destination IP address

0 0 0 0 0 0 0 0 Protocol = 6 Segment length

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 34 / 61



TCP Segment Structure (cont’d)

Urgent pointer, 16 bits
If the URG bit is set to 1, specifies a positive offset that must be added
to the Sequence number field value of the segment to yield the
sequence number of the last byte of urgent data (RFC 1122)
This allows the receiver to know how much urgent data are coming
TCP’s urgent mode is a way for the sender to transmit urgent (aka
out-of-band) data to the other end
E.g., when the Telnet or Rlogin user types the ’Interrupt’ key

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

0 7 15 23 31

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 35 / 61



TCP Segment Structure (cont’d)

A TCP segment with 8 bytes of data
Bytes 9, 10, and 11 contain urgent data
The last byte of urgent data = Sequence number + Urgent pointer =
= 9 + 2 = 11

Sequence number = 9

Acknowledgement number

Header Res. Window

Checksum Urgent pointer = 2

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

Byte 9 Byte 10 Byte 11 Byte 12

Byte 13 Byte 14 Byte 15 Byte 16

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 36 / 61



TCP Segment Structure (cont’d)

Options, variable length
TCP options extend TCP functionality
TCP options can be comprised of a single byte or multiple bytes
A host is not required to support all TCP options

Padding, variable length
If the length of the header is not a multiple of 32 bits (due to the
included options), the header will be padded out with ’0’s to make it a
multiple of 32 bits

Sequence number

Acknowledgement number

Header Res. Window

Checksum Urgent pointer

PaddingOptions (if any)

Source port Destination port

U A P R S FC E

0 7 15 23 31

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 37 / 61



Sequence Numbers and ACKs

2 important fields in the TCP header in providing a reliable data
transfer service:

Sequence number
Acknowledgement number

To illustrate the use of sequence numbers and acknowledgements
(ACKs), let us consider the Telnet application

Telnet is defined in RFC 854

The purpose of Telnet is to provide a general, full-duplex,
8-bit-oriented communications facility

The term ’telnet’ also refers to software which implements the client
part of the protocol

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 38 / 61



Sequence Numbers and ACKs (cont’d)

Each character typed by the user is sent to the server
Character length is 1 byte

The server sends back a copy of each character (echo)

Thus, each character traverses the network twice between the time the
user hits the key and the time the character is displayed on the user’s
monitor

User types "a":
Seq = x, ACK = y,
data = 1 byte

Server acknowledges 
receipt of "a" and 
echoes it back:
Seq = y, ACK = x+1,
data = 1 byte

User types "b" and 
acknowledges receipt 
of the echoed "a":
Seq = x+1, ACK = y+1,
data = 1 byte

Client Server

a

b

echo

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 39 / 61



Sequence Numbers and ACKs (cont’d)

ACKs can be piggybacked
A data segment from host A to host B can also contain an ACK for
data sent in the direction from B to A
This feature can help to reduce the number of packets transmitted,
since the ACK of received data does not have to travel in a packet
separate from those that hold data

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 40 / 61



Sequence Numbers and ACKs (cont’d)

ACKs are cumulative
E.g., the sender sends 2 segments with 1 - 1460 and 1461 - 2920 bytes,
but the receiver only gets the second segment
In this case, the receiver can not acknowledge the second segment, it
can only send ACK = 1
However, once the first segment arrives, the receiver will send a single
ACK for both segments (ACK = 2921)
In RFC 2018, a Selective Acknowledgment (SACK) mechanism has
been introduced

Pure ACKs (i.e., segments without data) are not retransmitted
Since an ACK for the next segment will acknowledge all successfully
received segments up to this moment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 41 / 61



Sequence Numbers and ACKs (cont’d)

Most TCP implementations use the delayed ACK algorithm
This allows to send an ACK and application data to the sender in a
single TCP segment

Send an ACK back if one of the following conditions is met:
No ACK was sent for the previous segment received
A segment is received, but no other segment arrives within 500 ms
(typically, 200 ms)
An incoming segment fills in all or part of a gap in the sequence space

Moreover, generate an immediate ACK when an out-of-order segment
is received (aka a duplicate ACK)

The purpose of this duplicate ACK is to inform the sender that a
segment was received out-of-order and which sequence number is
expected

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 42 / 61



Connection Setup

In order to reliably transfer data between hosts, TCP first establishes a
logical connection

To establish a TCP connection, 3 segments are sent between a client
and a server (aka the 3-way handshake )

The client-side TCP (host A) first sends a special TCP segment to the
server-side TCP (host B)

This segment does not contain any application-layer data
The SYN bit of this segment is set to 1
For this reason, it is referred to as a SYN segment
In addition, the client chooses an initial sequence number, ISN(A), and
puts this number in the Sequence number field of the segment
This segment is encapsulated into an IP packet and sent to the server

Thus, the client performs an active open

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 43 / 61



Connection Setup (cont’d)

E.g., a TCP connection:

Step 1: the SYN segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 44 / 61



Connection Setup (cont’d)

Once the SYN segment arrives at the server-side TCP, the server (host
B) allocates a buffer and variables for this connection

Then it sends a connection-granted segment to the client, which also
does not carry any application-layer data, but it contains 3 important
pieces of information in its header:

The SYN bit is set to 1
The Acknowledgment number field contains ISN(A)+1
The server chooses its own initial sequence number, ISN(B), and puts
this value in the Sequence number field of the segment header

The connection-granted segment is referred to as
a SYN/ACK segment

Thus, the server performs a passive open

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 45 / 61



Connection Setup (cont’d)

Step 2: the SYN/ACK segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 46 / 61



Connection Setup (cont’d)

Upon receiving this connection-granted segment, the client also
allocates a buffer and variables for this connection

Then the client sends to the server one more segment

This segment acknowledges the server’s connection-granted segment
The client does so by putting the value of ISN(B)+1 in the
Acknowledgment number field of the segment header

Since the connection is established, the SYN bit is set to 0
Thus, it is just an ACK segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 47 / 61



Connection Setup (cont’d)

Step 3: the ACK segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 48 / 61



Connection Setup (cont’d)

3-way handshake

SYN = 1
ISN = 3180262531
ACK = 0

SYN = 0
Seq = 3180262532
ACK =515671470

SYN = 1
ISN(A)
ACK = 0

SYN = 0
Seq = ISN(A)+1
ACK = ISN(B)+1

Host A
(Client)

SYN = 1
ISN(B)
ACK = ISN(A)+1

TUT 
computer

SYN = 1
ISN = 515671469
ACK = 3180262532

www.tut.fi
Host B

(Server)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 49 / 61



Data Transfer

Once a TCP connection is established, the client and server hosts can
send segments containing data to each other

In each of these subsequent segments, the SYN bit will be set to 0

How it works (sender side):
1 An application process passes a stream of data to the TCP send buffer
2 From time to time TCP grabs chunks of data from the send buffer
3 The maximum amount of data that can be placed into a segment is

limited by the Maximum Segment Size
4 TCP encapsulates each chunk of data into a TCP segment (i.e., adds a

TCP header), thereby forming TCP segments
5 These segments are passed down to the internet layer, where they are

separately encapsulated within IP packets
6 Then IP packets are sent to the network

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 50 / 61



Data Transfer (cont’d)

How it works (receiver side):
1 When TCP receives a segment, it places the segment’s data to the

TCP receive buffer
2 The corresponding application process reads data from this buffer

The Maximum Segment Size (MSS) is equal to the Maximum
Transmission Unit (MTU) minus the size of IP and TCP headers
without options

For IPv4: MSS = MTU – 40 bytes
For IPv6: MSS = MTU – 60 bytes

E.g., for IPv4 over Ethernet II: MSS = 1500 – 40 = 1460 bytes

Preamble
Destination 

address
Source 
address

DataEthertype

8 bytes 6 bytes 6 bytes 2 bytes 1460 bytes

Maximum Ethernet II frame size = 1518 bytes (not including Preamble)

4 bytes

FCS
IP 

header
TCP 

header

20 bytes 20 bytes

MSS

MTU

Ethernet 
header

Ethernet 
trailer

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 51 / 61



Connection Teardown

Either of the 2 application processes participating in a TCP
connection can terminate the connection

When a TCP connection ends, the resources (buffers and variables) in
the hosts are deallocated

Suppose the server (host B) decides to close the connection:
1 The server’s application process issues a ’Close’ command
2 So the server sends a TCP segment with the FIN bit set to 1
3 Thus, the server performs an active close
4 When the client receives this FIN segment, it sends an ACK back
5 Then the client’s application process issues a ’Close’ command
6 The client sends its own TCP segment with the FIN bit set to 1
7 Thus, the client performs a passive close
8 Finally, the server acknowledges the client’s FIN segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 52 / 61



Connection Teardown (cont’d)

When TCP does an active close and sends the final ACK, the
connection must stay in the TIME_WAIT state for twice
the Maximum Segment Lifetime (MSL)

MSL is the time a TCP segment can exist in the network
MSL is enforced by the Time to Live (TTL) field in an IP header
Typically, MSL is set to 2 minutes, 1 minute, or 30 seconds
If a retransmission of the final FIN arrives while TCP in the
TIME_WAIT state, this ACK is retransmitted and the timer is
restarted

Source IP address

Header checksum

IHL Type of service Total length

Data

Version

Identification Flags Fragment offset

ProtocolTime to live

Destination IP address

Options (if any) Padding

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 53 / 61



Connection Teardown (cont’d)

The TIME_WAIT state is required for 2 main reasons:
To provide enough time to ensure that the ACK is received by the
other host and to retransmit it if needed
To provide a ’buffering period’ between the end of this connection and
any subsequent ones

Closed

Closed
TIME_WAIT = 2*MSL

Host A
(Client)

Host B
(Server)

ACK

FIN

ACK

FIN

“Close”

“Close”

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 54 / 61



Connection Teardown (cont’d)

E.g., a TCP connection:

Step 1: the active close FIN segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 55 / 61



Connection Teardown (cont’d)

Step 2: the ACK for the active close FIN segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 56 / 61



Connection Teardown (cont’d)

Step 3: the passive close FIN segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 57 / 61



Connection Teardown (cont’d)

Step 4: the ACK for the passive close FIN segment

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 58 / 61



TCP Functions

TCP function Implementation

Ordered data transfer and 
data segmentation

Connection establishment and termination
MSS option
Path MTU discovery

Multiplexing/demultiplexing Port numbers

Error control Checksum computation
Sequence numbers
Protection against wrapped sequences
Cumulative and selective ACKs
Retransmission timer and retransmissions

Flow control Receive window
Silly window syndrome avoidance
Nagle algorithm
Window scale option

Congestion control Karn’s algorithm
Initial window
Slow start
Congestion avoidance
Fast retransmit and fast recovery
ECN-support

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 59 / 61



UDP vs. TCP

Why is there UDP?
No connection establishment ⇒ no signaling overhead
No connection state at the end hosts ⇒ few resources are required
Small header ⇒ small control overhead
Error control is optional ⇒ suitable for loss-tolerant applications
No flow or congestion control ⇒ unbounded sending rate
Simple implementation ⇒ flexibility and scalability

UDP TCP

Message-oriented Byte-stream-oriented

Unreliable Reliable

Connectionless Connection-oriented

Stateless Stateful

Unicast and multicast Unicast only

Used by a few user applications 
(VoIP, multimedia streaming, etc.)

Used by many user applications 
(WWW, email, FTP, Telnet, etc.)

Used by many network services
(RIP, SNMP, DNS, etc.)

Used by a few network services 
(e.g., DNS zone transfers)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 60 / 61



Data Integrity Verification

Protocol Checksum 
field, bits

Algorithm

Header Data

Ethernet
Token Bus / Ring
Wi-Fi
FDDI

32 CRC-32 Yes Yes

IPv4 16 Internet 
checksum

Yes No

ICMPv4
ICMPv6

16 Internet 
checksum

Yes Yes

UDP 16 Internet 
checksum

Yes + 
pseudoheader

Yes

Checksum covers

TCP 16 Internet 
checksum

Yes + 
pseudoheader

Yes

PPP 16 or 32 CRC-16/-32 Yes Yes

SLIP No

IPv6 No

Roman Dunaytsev (SUT) Protocols & Services Lecture № 7 61 / 61


	Transport layer
	Multiplexing/demultiplexing
	Port numbers

	UDP
	Overview
	Datagram structure

	TCP
	Overview
	Segment structure
	Sequence numbers and ACKs
	Connection setup
	Data transfer
	Connection teardown
	Summary


