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Link Layer

The link layer – the lowest layer in the TCP/IP model

Sometimes called the data link layer, the network access layer, or
the network interface layer

Application layer

Internet layer

Link layer

Transport layer

TCP/IP modelOSI model

Application layer
(Layer 7)

Presentation layer
(Layer 6)

Session layer
(Layer 5)

Transport layer
(Layer 4)

Network layer
(Layer 3)

Data link layer
(Layer 2)

Physical layer
(Layer 1)

HTTP, FTP, IMAP, 
SMTP, POP3, 
DNS, SNMP, 

telnet, ...

IP, ICMP,
ARP, RARP, ...

TCP, UDP

TCP/IP 
protocol suite

IEEE stds, …
(DL & PHY layers)

SLIP,
PPP
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Link Layer (cont’d)

The link layer transforms the physical layer, a raw transmission
facility, to a communication link

The link layer is responsible for communication between nodes that
are directly connected by a physical medium

Functions of the link layer :

Framing – inserts framing information into the transmitted stream to
indicate the boundaries that define frames
Error control – ensures the integrity of the transmitted data
Flow control – prevents the sender from overloading the receiver
Addressing – inserts address or protocol type information to define the
sender and/or receiver of the frame
Media access control – determines which device has control over the
link at any given time

Link layer protocols may include only some of these functions
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Link Layer (cont’d)

The TCP/IP protocol suite supports many different link layer
protocols, depending on the type of networking hardware being used:

IEEE 802.3: Ethernet
IEEE 802.11: Wi-Fi
IEEE 802.16: WiMAX
ANSI X3: Fiber Distributed Data Interface (FDDI)
etc.

IETF standards cover only 2 link layer protocols:

RFC 1055 (June 1988): Serial Line Internet Protocol (SLIP)
RFC 1661 (July 1994): Point-to-Point Protocol (PPP)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 4 6 / 57



Framing

Framing is the process of sequencing data into standard patterns

3 types of data link protocols :

Bit-oriented
Character-oriented
Byte count-oriented

Bit-oriented – identify the beginning and end of a frame with a
special sequence of bits called a flag

E.g., High-Level Data Link Control (HDLC), PPP

Character-oriented – identify the beginning and end of a frame with
special characters

E.g., Binary Synchronous Communications (Bisync or BSC), SLIP

Byte count-oriented – identify the beginning of a frame with a
special character followed by the precise number of bytes that the
frame contains

E.g., Kermit (named after Kermit the Frog from The Muppets)
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SLIP

Serial Line Internet Protocol (SLIP) – a character-oriented
protocol for sending IP packets over point-to-point serial lines, either
dedicated or dial-up

SLIP provides just framing using character stuffing

SLIP defines 2 special characters: END (0xC0) and ESC (0xDB)
Do not confuse the SLIP ESC character with ASCII ESC (0x1B)
The ’0x. . . ’ notation is used to specify hexadecimal (HEX) values

Ver. 1: ...

0xC0 ...0xDB...

IP packet (up to 1006 bytes)

1 byte

ESC ESC

0xDB 0xDC

...

... 0xDB 0xDD ... 0xC0

END

1 byte

1 byte 1 byte 1 byte 1 byte 1 byte
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SLIP (cont’d)

SLIP works as follows:
1 To send an IP packet, a SLIP sender simply starts sending the data in

the packet
2 If a data byte is the same as END, a 2-byte sequence of ESC and 0xDC

is sent instead
3 If a data byte is the same as ESC, a 2-byte sequence of ESC and 0xDD

is sent instead
4 When the last byte in the packet has been sent, END is then

transmitted

Most implementations transmit END at the beginning of packets too

Ver. 2: ...

0xC0 ...0xDB...

IP packet (up to 1006 bytes)

1 byte

ESC ESC

0xDB 0xDC

...

... 0xDB 0xDD ... 0xC0

END

0xC0

END

1 byte

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte
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PPP

Point-to-Point Protocol (PPP) – a bit-oriented protocol for
sending IP and other types of packets over both asynchronous
(e.g., dial-up) and synchronous (e.g., ISDN) serial lines

PPP consists of 3 components:

A method for framing multi-protocol packets
A Link Control Protocol (LCP) for establishing, configuring, and
testing the link connection
A family of Network Control Protocols (NCPs) for establishing and
configuring different network layer protocols (e.g., RFC 1332: the
Internet Protocol Control Protocol (IPCP))

PPP uses the High-Level Data Link Control (HDLC) framing
structure to encapsulate its data during transmission

This includes 2 fields that are needed in HDLC but not in PPP:
Address and Control
They are maintained for backward compatibility but can be suppressed
using Address and Control Field Compression (ACFC)
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PPP (cont’d)

Flag – each frame begins and ends with 01111110

Address – always 11111111 (means ’all stations’)

Control – always 00000011

Protocol – identifies the data encapsulated in the information field of
the frame (e.g., 0x0021 = IP packet, 0x002B = Novell IPX packet,
0xC021 = LCP data, 0x8021 = NCP data for IP)

FCS – frame check sequence to detect errors in the frame

0xFF

Data (up to 1500 bytes)

...

0x7E

Address

0x03

ControlFlag

...

Protocol

... ...

FCS

0x7E

Flag

1 byte 1 byte2 bytes1 byte 1 byte 2 bytes

Information
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PPP (cont’d)

Since 01111110 is the framing flag, PPP needs to escape this pattern
when it appears in the information field

On asynchronous links this is done by using character stuffing :

Similar to SLIP, PPP uses a special escape character (0x7D)
If a data byte is the same as the flag (0x7E), a 2-byte sequence of
0x7D and 0x5E is sent instead
If a data byte is the same as the escape (0x7D), a 2-byte sequence of
0x7D and 0x5D is sent instead

On synchronous links this is done by using bit stuffing :
An extra ’0’ after every 5 ’1’s in the information field is inserted
The receiver can now correctly detect the structure enforced by the
flags by inspecting the first bit after every 5 ’1’s: if it is a ’0’ it must be
deleted, otherwise it is a true flag

0 1 1 1 1 1 1 0

Framing flag

… 0 1 1 1 1 1 1 1 1 0 1 0 … 0 1 1 1 1 1 1 0

Framing flag0
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PPP (cont’d)

PPP works as follows:
1 In order to establish communications over a point-to-point link, each

end of the PPP link must first send LCP frames to configure and test
the link

2 After the link has been established and optional facilities have been
negotiated as needed by LCP, PPP must send NCP frames to choose
and configure one or more network layer protocols (e.g., IP, Novell IPX)

3 Once each of the chosen network layer protocols has been configured,
packets from each network layer protocol can be sent over the link

4 The link will remain configured for communications until explicit LCP
or NCP frames close the link down, or until some external event occurs
(e.g., an inactivity timer expires)

Due to LCP/NCP negotiations, PPP supports full duplex links only

PPP replaces SLIP as the protocol of choice for point-to-point
connections
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PPP (cont’d)

Feature SLIP

Compression None; Compressed SLIP 
(CSLIP) added later as an 
option

Automatically negotiated as a 
part of the connection setup

PPP

Connection 
configuration

Manual Automatic; IP configuration is 
a part of the connection setup 
and is transparent to the user

Error detection None Built-in

Authentication None Supports the Password 
Authentication Protocol (PAP) 
and the Challenge Handshake 
Authentication Protocol 
(CHAP)

Protocol 
handling

IP only Multi-protocol handling on a 
single serial connection

Industry support None Widespread industry support
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Error Control

Why error control?

Computer applications require precise instructions to operate
correctly

However, due to unreliable networking protocol data units (PDUs)
may be lost, duplicated, misrouted, excessively delayed, or delivered
out of order

Moreover, once data are sent over the transmission medium the
characteristics of the medium affect the transmitted data in various
ways so that the signals received at the remote end of a link differ
from the transmitted signals

These adverse characteristics of a physical transmission medium are
known as transmission impairments
In case of binary data, transmission impairments may lead to errors:
’0’s are transformed into ’1’s and vice versa
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Error Control (cont’d)

3 main transmission impairments :

Attenuation
Distortion
Noise

Attenuation – when a signal is transmitted through a
communication channel, its amplitude decreases

Distortion – when a signal is transmitted through a communication
channel, its shape changes

Amplitude distortion – since the communication channel is limited to
certain frequencies, the output amplitude is not a linear function of the
input amplitude under certain conditions
Delay distortion – since different signal frequencies travel at different
velocities, they arrive at the receiver at slightly different times

Noise – the presence in a communication channel of random,
unwanted signals
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Error Control (cont’d)

The effect of transmission impairments on a data transmission is to
introduce errors

The effect of transmission impairments can be remedied (to a certain
extent) with cable insulation, hardware compensation filters, etc.

The errors that remain must be caught by communication protocols

Similarly to quality control on production lines
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Error Control (cont’d)

Since errors are unavoidable in data communication systems, it is
necessary to introduce some form of error control

The first step in any form of error control is to detect errors if any

Having detected the presence of errors, there are 2 strategies
commonly used to correct errors :

Feedback error control – a message is returned to the sender
indicating that errors have occurred and requesting a retransmission of
the data
Forward error correction – further computations are carried out at
the receiver to correct errors

Note that some applications are relatively error-tolerant without
degrading the end-user perception (e.g., VoIP)

However, most Internet applications and services require error-free
data delivery and proper sequencing (e.g., WWW)
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Error Control (cont’d)

Error detection – a method that allows some bit errors to be
detected

The data are encoded so that the encoded data contain some
additional redundant information about the data

If there is no redundancy, then it is impossible to distinguish between
correct and incorrect messages

The data are decoded so that the additional redundant information
must match the original information

2 fundamental observations:

All error-detection schemes will fail to detect some errors
In all error-detection schemes, redundancy must be added to the
message to enable faulty received messages to be distinguished from
correct messages

Roman Dunaytsev (SUT) Protocols & Services Lecture № 4 20 / 57



Echoplex

Echoplex (aka echoing) has been used in early systems with
keyboard data entry

In such systems, a character displayed at a terminal is not obtained
directly from the keyboard
Instead, each character is transmitted to the receiver, where it is sent
back (echoed)
Error detection and correction is the responsibility of the user, who
compares displayed characters with those entered (or supposedly
entered)

Echoplex requires a full duplex link to allow the echo to come back

User types “a”

User receives the 
echo and checks

Terminal Server

echo (a)

a

Server echoes 
back “a”
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Echoplex (cont’d)

If a full duplex configuration is not available, a device is usually
switched to local echo, which sends the echo through the local
modem back to the user device

However, local echo does not allow to check for errors across the link

Although echoing is reasonable for error control in simple systems, it
has serious shortcomings:

Echoplex relies heavily on human detection of errors
Echoing does not work well on long distance connections
A very low throughput
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Single Parity Check

Parity checking – the parity bit is used to ensure that the

transmitted message (which includes the parity bit) has either an odd
or even number of ’1’s, depending on whether odd parity or even
parity scheme has been selected

Odd parity: should be odd number of ’1’s
Even parity: should be even number of ’1’s

The receiver must be set to the same parity scheme as the sender

To correct the error, the message (e.g., 7 bits of an ASCII character
plus the parity bit) must be sent again

The American Standard Code for Information Interchange (ASCII) is a
character encoding based on the English alphabet

2 types of parity check :

Single parity check
2-dimensional parity check
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Single Parity Check (cont’d)

Single parity check – adding a single parity bit to each string of
bits that comprise a character

It is the simplest parity check scheme

The parity bit is inserted at the sender, sent with each character in
the message, and checked at the receiver to determine if each
character has the correct parity

If transmission impairments caused a bit flip of ’1’ to ’0’ or
’0’ to ’1’, the parity check would indicate this

The parity bit (PB) is calculated as the modulo 2 sum of the data
bits:

PBeven ≡ d1 + d2 + · · ·+ dk =
k∑

i=1

di (mod 2)

PBodd ≡ PBeven + 1 (mod 2)
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Single Parity Check (cont’d)

Modulo 2 sum is based on the binary addition with no carries (aka
exclusive OR (XOR)):

0 + 0 ≡ 0 (mod 2)
0 + 1 ≡ 1 (mod 2)
1 + 0 ≡ 1 (mod 2)
1 + 1 ≡ 0 (mod 2)

Modulo arithmetic (aka clock arithmetic) – a system of
arithmetic for integers, where numbers ’wrap around’ after they reach
a certain value - the modulus

E.g., since the hour number starts over when it reaches 12, this is
arithmetic modulo 12
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Single Parity Check (cont’d)

Consider sending the ASCII character ’A’ (1000001) using even parity

The parity bit should be set to 0 to make the overall number of ’1’s
an even number

Setting the parity bit in the most significant bit (msb) position
gives the 8-bit message

Assume the least significant bit (lsb) is corrupted and received in
error

The number of ’1’s is now an odd so an error must have occurred

msb lsb

0 1 0 10 0 0 0

PB

0 1 0 00 0 0 0

error
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Single Parity Check (cont’d)

A single transmission error causes recomputed parity at the receiver
to be invalid, so the error is detected

Which particular bit is wrong is not known by the receiver, so the
character must be sent again to correct the error

A double error, however, results in the same parity and cannot be
detected

More generally, any odd number of errors can be detected but
any even number cannot be detected

This is true for either odd or even parity

Single parity check will detect virtually all random, independently
occurring errors

This is because in practice the probability of a single error, although
very small, is generally much greater than the probability of 2 errors
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Single Parity Check (cont’d)

However, there is another class or errors, called burst errors, in which
the occurrence of errors is not independent

The burst starts with the first bit which is an error and ends with the
last bit in error
Between the start and finish the bits will be random, so it can be
expected that half of them will be correct
Since the number of errors in the burst is equally likely to be odd or
even, single parity check will only detect half of such burst errors

Consider the following cases:

Original (even parity): 01011 01010100 101

Burst error (all “0” to “1”):

Result: 11111 11011110 101

Parity check: Ok (even) Fails (not even)

Errors: Not detected Detected
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Single Parity Check (cont’d)

Single parity check is not very efficient for long messages

Since probability of multiple errors increases with the message length

Nevertheless, single parity check provides a remarkable amount of
error-detection capability

The addition of just 1 check bit results in making half of all possible
error patterns detectable, regardless of the number of information bits

Stronger error detection is possible with 2-dimensional parity check

2-dimensional parity check increases the likelihood of detecting burst
errors
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2D Parity Check

2-dimensional parity check – a refinement of single parity check
In addition to a parity bit on each character, it places a parity (odd or
even) on a block of characters

Character 1 d11

Data bits

Character 2

Character m

Block check

...

d12 d1k

d21 d22 d2k

dm1 dm2 dmk

p1r

p2r

...

pmr

pc1 pc2 pck pcr

...

Parity bits for columns

P
a

ri
ty

 b
it

s
 f

o
r 

ro
w

s...

...

...
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2D Parity Check (cont’d)

2-dimensional parity check can potentially correct single errors,
located by the intersection of a row and a column with invalid parity

Double errors in any row or column can be only detected

Even numbers of errors in each row and even numbers of errors in
each column cannot be detected

0 001

Located 1 
out of 1 error

1 0

0 100 0 0

0 001 1 0

0 011 1 1

0 101 1 1

0 001 1 0

0 100 0 0

0 001 1 0

0 001 1 1

0 101 1 1

Detected 2 
out of 2 errors

0 001

Detected 2 
out of 3 errors

1 0

0 100 1 0

0 001 1 0

0 001 1 1

0 101 1 1

0 001 1 0

0 100 1 0

0 001 1 0

0 001 0 1

0 101 1 1

Detected 0 
out of 4 errors
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Internet Checksum

Checksumming – a simple error-detection scheme whereby each
message is accompanied by a value based on the number of bits in
the message

Checksums have no ability to correct errors, but only detect them

The receiver then applies the same formula to the message and
checks to make sure the value is the same

If the value matches, it is assumed that the message was received
correctly
If not, the receiver can assume that the message was corrupted

Checksums take on various forms

Usually 8, 16, or 32 bits in size
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Internet Checksum (cont’d)

Several TCP/IP protocols (IPv4, ICMP, UDP, and TCP) use the

Internet checksum algorithm to detect errors

It has no ability to correct errors, but only detect them
RFC 1071 ’Computing the Internet checksum’

Internet checksum works as follows:
1 The checksum field itself is filled with ’0’s
2 Adjacent bytes to be checksummed are paired to form 16-bit words
3 The modulo (216 − 1 = 65, 535 or 0xFFFF) sum is computed over

these 16-bit words
4 The 1’s complement (i.e., bitwise NOT) of this sum is placed in the

checksum field
5 Then, to verify the checksum, the modulo (216 − 1) sum is computed

over the same set of bytes, including the checksum field
6 If the result is all ’1’s (i.e., ’−0’ in 1’s complement arithmetic), the

check succeeds

Bitwise NOT = all ’0’s become ’1’s and vice versa

Roman Dunaytsev (SUT) Protocols & Services Lecture № 4 33 / 57



Internet Checksum (cont’d)

Consider the 4 bytes: 0x7B, 0xF7, 0xCD, 0x1C

They can be paired to form 2 16-bit words as 0x7BF7 and 0xCD1C
(i.e., 01111011 11110111 and 11001101 00011100)

The modulo 0xFFFF sum is computed over these bytes
Any carry arising from the summing is added back to the total

0111101111110111 0100100100010011
1100110100011100 ↗ 0000000000000001

10100100100010011 0100100100010100

The 1’s complement of this sum (bitwise NOT) is:

0100100100010100
1011011011101011

Thus, the checksum is 10110110 11101011 (or 0xB6EB):
0x7BF7 + 0xCD1C + 0xB6EB ≡ 0xFFFF (mod 0xFFFF)
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CRC

Cyclic Redundancy Check (CRC) – one of the most common

(and one of the most powerful) error-detection schemes

In CRC, the informational symbols are represented by polynomials
with binary coefficients

I.e., the k information bits are used to form the informational
polynomial of degree (k − 1):

(bk−1, bk−2, . . . , b1, b0)⇒ bk−1x
k−1 + bk−2x

k−2 + · · ·+ b1x + b0

E.g., a 4-bit block gives an informational polynomial of degree 3:

(1, 0, 0, 1)⇒ k = 4⇒ 1 ∗ x3 + 0 ∗ x2 + 0 ∗ x1 + 1 ∗ x0 = x3 + 1
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CRC (cont’d)

CRC works as follows:
1 Given a k-bit block of bits, the sender generates a n-bit sequence,

known as a Frame Check Sequence (FCK) , so that the resulting

frame, consisting of (k + n) bits, is exactly divisible by some predefined

generator polynomial of degree n (i.e., (n + 1)-bit in size)
2 To do this, the original block is shifted to the left by n bits and is

padded out with ’0’s
3 Then the FCS is obtained by dividing this new sequence by the

generator polynomial and using the reminder as the FCS, while the
quotient is discarded

4 The receiver then divides the incoming frame of (k + n) bits by the
generator polynomial and if there is no reminder (the reminder is 0),
assumes there was no error

Roman Dunaytsev (SUT) Protocols & Services Lecture № 4 36 / 57



CRC (cont’d)

All calculations are based on polynomial arithmetic modulo 2
We use ’modulo 2’ because polynomial coefficients may be only 1 or 0

Polynomial arithmetic modulo 2 uses binary addition with no carries
(XOR)

Note that addition and subtraction give the same result in modulo 2

1001 1001
+0101 −0101

1100 1100

11001
× 11

11001
+110010

101011
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CRC (cont’d)

4-bit message M: (1, 1, 0, 0)⇒ x3 + x2, k = 4

Generator polynomial: (1, 0, 1, 1)⇒ x3 + x + 1, n = 3

Message M is shifted to the left by n bits:
2nM ⇒ (1, 1, 0, 0, 0, 0, 0)⇒ x3(x3 + x2) = x6 + x5

x6 + x5 |x3 + x + 1

x6 + x4 + x3 |x3 + x2 + x

x5 + x4 + x3

x5 + x3 + x2

x4 + x2

x4 + x2 + x

x = FCS

Frame to transmit (k + n = 7 bits): (1, 1, 0, 0, 0, 1, 0)⇒ x6 + x5 + x
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CRC (cont’d)

Frame received (7 bits): (1, 1, 0, 0, 0, 1, 0)⇒ x6 + x5 + x

Generator polynomial: (1, 0, 1, 1)⇒ x3 + x + 1

Frame is divided by generator polynomial; reminder should be 0:

x6 + x5 + x |x3 + x + 1

x6 + x4 + x3 |x3 + x2 + x

x5 + x4 + x3 + x

x5 + x3 + x2

x4 + x2 + x

x4 + x2 + x

0 = reminder

Check is Ok
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CRC (cont’d)

8-bit message M: (1, 0, 0, 1, 1, 0, 1, 0)⇒ x7 + x4 + x3 + x , k = 8

Generator polynomial: (1, 1, 0, 1)⇒ x3 + x2 + 1, n = 3

(1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0)⇒ x3(x7 +x4 +x3 +x) = x10 +x7 +x6 +x4

10011010000 |1101

1101 |11111001

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

101 = FCS

Frame to transmit (k + n = 11 bits): (1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1)
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CRC (cont’d)

Frame received (11 bits), lsb in error: (1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0 )

Generator polynomial: (1, 1, 0, 1)

Frame is divided by generator polynomial; reminder should be 0:

10011010100 |1101

1101 |11111001

1001

1101

1000

1101

1011

1101

1100

1101

1100

1101

1 ⇒ reminder 6= 0

Check fails, error detected
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CRC (cont’d)

Some standard generator polynomials:

CRC-8-CCITT: x8 + x2 + x + 1

CRC-16: x16 + x15 + x2 + 1

CRC-CCITT: x16 + x12 + x5 + 1

CRC-32 (aka CRC-CCITT):

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

The CRC algorithm, while seemingly complex, is easily implemented
in hardware using shift register and XOR gates

When the generator polynomial is selected carefully, the probability
that the CRC algorithm cannot detect an error is very low

E.g., CRC-12 detects 99.97% of errors with a length 12 or more
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BER and FER

In telecommunications, an error rate is the ratio of the number of
bits/elements/characters/PDUs/etc. incorrectly received to the total
number of bits/elements/characters/PDUs/etc. sent during a
specified time interval

Bit Error Rate (BER) = Erroneous bits / Total number of bits

PDU loss rate = Lost PDUs / Total number of PDUs

The number of errors caused by data transmission is typically orders
of magnitude larger than the number of errors caused by hardware
failures within a computer system

For optical fiber links, BER is usually below 10−9

For internal circuits, BER is usually below 10−15
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BER and FER (cont’d)

Frame Error Rate (FER) can be obtained from BER as follows:

Probability of a bit being error-free = (1− BER)
Probability of a frame of length N being error-free = (1− BER)N

FER = 1− (1− BER)N

What is the effect of altering the length of frames?

An increased frame size implies a smaller frame overhead
But larger frames are more vulnerable to bit errors

Consider transmission of 1 PDU per time slot, no retransmissions,
BER = 10−3, header plus trailer (if any) length = 100 bits,
total PDU length N = [101, . . . , 10000] bits

Data rate effective =
(N − header)

slot
∗ (1− BER)N
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BER and FER (cont’d)

The choice of an optimum PDU size is particularly important for
long-range communications in the presence of a high BER
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Checksum Offloading

The checksum calculation might be done in software or in hardware

Higher-level protocols (e.g., TCP, UDP, IPv4) calculate checksums
themselves and then passe the completed packet to the hardware

Recent network adapters can provide advanced features such as
Internet checksum calculation, also known as checksum offloading

I.e., a higher-level protocol driver will not calculate the checksum
itself but will simply pass an empty (’0’s or garbage filled) checksum
field to the hardware

Roman Dunaytsev (SUT) Protocols & Services Lecture № 4 46 / 57



Checksum Offloading (cont’d)

Wireshark , a free network protocol analyzer, validates the
checksums of several protocols (TCP, UDP, IPv4, etc.)

www.wireshark.org

It does the same calculation as a ’normal receiver’ would do, and
shows the checksum fields in the packet details with a comment

E.g., [correct], [incorrect, should be 0xd326], etc.

However, note:

The Ethernet transmitting hardware calculates the Ethernet CRC-32
checksum and the receiving hardware validates this checksum
If the received checksum is wrong, Wireshark will not even see the
packet, as the Ethernet hardware internally discards the packet
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Checksum Offloading (cont’d)

Checksum offloading often causes confusion as the network packets to
be transmitted are handed over to Wireshark before the checksums
are actually calculated

Wireshark gets these ’empty’ checksums and displays them as invalid,
even though the packets will contain valid checksums when they leave
the network hardware later

Checksum offloading can be confusing and having a lot of ’invalid’
messages on the screen can be quite annoying

You can do 2 things to avoid this checksum offloading problem:

Turn off the checksum offloading in the network driver, if this option is
available
Turn off checksum validation of the specific protocol in the Wireshark
preferences (Recommended)
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Checksum Offloading (cont’d)
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FEC

Forward Error Correction (FEC) – adding of redundant

information embedded in the data set so the receiver can detect errors
and correct them without requiring a retransmission

FEC imposes a greater bandwidth overhead than feedback error
control, but is able to recover from errors more quickly

Adding more check bits reduces the amount of available bandwidth,
but also enables the receiver to correct more errors

BCH codes, bits: (total length; payload; correcting capability)
E.g., (255, 131, 18) and (255, 87, 26)

FEC tends to be most useful when:

Errors are quite probable (satellite and mobile networks)
Retransmissions are impractical or simply impossible (satellite and
multicast-based content distribution systems)

FEC is not restricted to communications but can also be found in
storage applications (CDs, DVDs, HDDs)

Roman Dunaytsev (SUT) Protocols & Services Lecture № 4 50 / 57



ARQ

Even very powerful error-correcting code may not be able to correct
all errors that arise in a communication channel

Consequently, many data communication links provide a further
error-control mechanism – feedback error control – in which errors
in data are detected and the data are retransmitted

This is known as Automatic Repeat reQuest (ARQ) and it
involves using redundant information embedded in the data to detect
errors at the receiver and then returning a message to the sender
requesting the retransmission of a PDU (or PDUs)

In contrast to FEC, ARQ uses extra bandwidth mainly when PDUs
are retransmitted but introduces variable delay (aka jitter) due to
these retransmissions

The shortcomings of FEC and ARQ could be overcome if they are
used in combination (aka hybrid ARQ (HARQ))
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ARQ (cont’d)

ARQ schemes are based on some or all of the following components:

Error detection
Using checksums and various forms of sequencing (to compensate

for situations where PDUs have been received out of order or lost)

Positive acknowledgements (aka ACKs or RR (Receive Ready))
The receiver returns a positive acknowledgement to successfully
received, error-free PDUs

Negative acknowledgements (aka NACKs or REJ (Reject))
The receiver returns a negative acknowledgement to PDUs in which an
error is detected

Retransmission timeouts (aka RTO)
The sender retransmits a PDU that has not been acknowledged after a
predefined amount of time
The receiver sends a NAK if it does not receive the expected PDU
within a predefined time interval
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ARQ (cont’d)

3 types of ARQ :

Stop-and-Wait
Go-back-N
Selective-Repeat (aka Selective-Reject)

Stop-and-Wait ARQ – the simplest ARQ scheme and ensures that
each transmitted PDU is correctly received before sending the next

After transmitting a PDU, the sender waits for a reply before sending
another PDU
Thus, PDU transmissions alternates with acknowledgements (positive
or negative)

Stop-and-Wait ARQ can be inefficient in its utilization of the
transmission link due to the time spent in acknowledging every PDU

Efficient resource utilization is an important consideration in the design
of a communication protocol
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ARQ (cont’d)

Stop-and-Wait ARQ implementations
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ARQ (cont’d)

The efficiency can be increased by transmitting a number of PDUs
continuously without waiting for an immediate acknowledgement in
continuous ARQ

In continuous ARQ, both PDU and ACK transmissions occur
simultaneously
This form of error control is based on sliding-window flow control,
where the sender may transmit a series of PDUs sequentially numbered
At any time, the number of unacknowledged outstanding PDUs should
be no more than the window size

When a NAK is received at the sender (or the retransmission timer
expires), it may already have transmitted several PDUs following the
one in error

2 variants of continuous ARQ :
In Go-back-N ARQ, the erroneous PDU and all subsequent PDUs
already transmitted should be retransmitted
In Selective-Repeat ARQ, only the erroneous PDU should be
retransmitted
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ARQ (cont’d)

Go-back-N ARQ simplifies the implementation by not requiring the
receiver to reorder PDUs, while Selective-Repeat ARQ requires
sufficient storage space to save all PDUs received out of order
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ARQ (cont’d)

ARQ persistence is the willingness to retransmit lost PDUs to
ensure reliable data delivery across the link

I.e., the maximum number of transmission attempts per PDU

3 levels of ARQ persistence :

Perfect persistence (reliable) – repeat a lost or corrupted PDU an
indefinite (and potentially infinite) number of times until the PDU is
successfully received
High persistence (highly-reliable) – limit the number of times that
ARQ may retransmit a particular PDU before the sender gives up on
retransmission of the missing PDU and moves on to forwarding
subsequent buffered in-sequence PDUs
Low persistence (partially-reliable) – just a few transmission attempts
per PDU
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