Индустриальные помехи

Задачи ЭМС 3

Возникновение индустриальных помех

- Индустриальные помехи электромагнитные помехи в диапазоне радиочастот, создаваемые электрическими и электронными устройствами всех видов и излучений, кроме тех, которые работают на присвоенных им частотах.
- Для индустриальных помех существуют возможности регулирования их влияния как в рецепторах, так и в источниках.
- Источники: электрооборудование, транспортные средства, ЛЭП, промышленное оборудование и т.д.
- Требования по допустимым уровням индустриальных помех регулируются нормами ГКРЧ
- Источники индустриальных помех (устройства) подвергаются контролю качества параметров ЭМС при выпуске и сертификации.
- Задачу обеспечения ЭМС при возникновении индустриальных помех решают на этапе проектирования сети

Международный специальный комитет по радиопомехам (СИСПР)

Подкоммитеты:

- А Измерения помех и статистические методы
- В Помехи, относящиеся к промышленным, научным и медицинским радиочастотным установкам, другим промышленным установкам, воздушным линиям электропередач, высоковольтному оборудованию и системам с электротягой
- D Электромагнитные помехи, относящиеся к электрическому/электронному оборудованию автомобилей и устройствам, содержащим двигатели внутреннего сгорания
- F Помехи, относящиеся к бытовым приборам, инструментам, осветительному оборудованию и подобным установкам
- Н Нормы для защиты радиослужб
- I Электромагнитная совместимость оборудования информационных технологий, оборудования мультимедиа и приемников

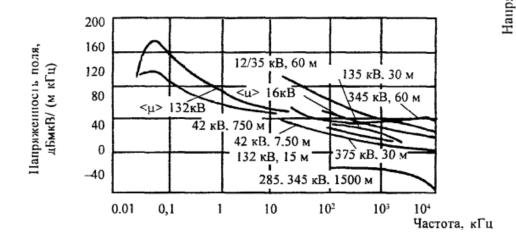
Рецепторы индустриальных помех

Класс 1 - РЭС

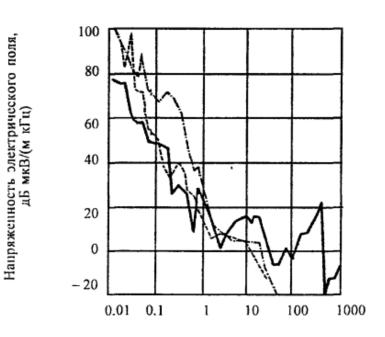
- Основной путь проникновения индустриальной помехи – антенный вход РЭС
- Дополнительные пути проникновения: провода заземления, цепи питания, контурами вследствие некачественного экранирования

Класс 2 – не относится к РЭС

• Основные пути проникновения индустриальной помехи — провода заземления, цепи питания, контурами вследствие некачественного экранирования


Классификация индустриальных помех

По функциональному назначению:


- Бытовые приборы и устройства (0,15-1000 МГц)
- Электрическое сетевое оборудование (0,15-600 МГц)
- Автомобили и устройства с двигателями внутреннего сгорания (0,15 МГц-4 ГГц)
- Промышленные, научные, медицинские и бытовые высокочастотные устройства (18-20 ГГц // гармоники с 2.4 ГГц)
- ЛЭП и электроподстанции (20-30 МГц)
- Системы с электротягой (1-2 ГГц)
- Приемники звукового и телевизионного вещания и бытовая радиоаппаратура (30 МГц 10 ГГц)
- Оборудование информационных технологий (100 МГц 10 ГГц)

Уровень индустриальных помех от систем зажигания на расстоянии 10 м от дороги

Примеры:

Уровень индустриальных помех от флуоресцентных ламп на расстоянии 0,9 м:

——— Холодный катод 2,4 м ---- Блок из 2-х ламп по 0,6 м --- Горячий катод 1,2 м

Уровень индустриальных помех от ЛЭП

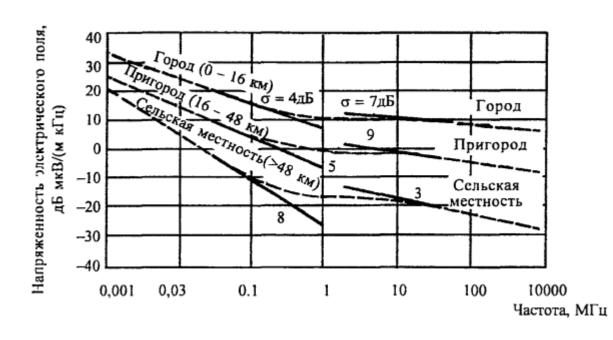
По местоположению:

- Технические средства, применяемые в промышленных зонах
- Технические средства, применяемые в жилых, коммерческих и производственных зонах с малым энергопотреблением
- Предприятия на выделенных территориях
- Оборудование и аппаратура, устанавливаемые совместно с РЭС:
 - 1. Радиоэлектронное и электронное оборудование:
 - Оборудование объектов со станциями сухопутных фиксированных и подвижных служб
 - Оборудование объектов со станциями воздушных подвижных и фиксированных служб, космических и земных станций
 - Оборудование объектов со станциями морской подвижной службы
 - 2. Электротехническое, электромеханическое оборудование и источники электроэнергии
 - 3. Подвижные объекты, а том числе средства электропитания с двигателями внутреннего сгорания:
 - Объекты для размещения станций сухопутных подвижных служб и автономные средства электропитания с двигателями внутреннего сгорания
 - Объекты со станциями воздушных подвижных служб

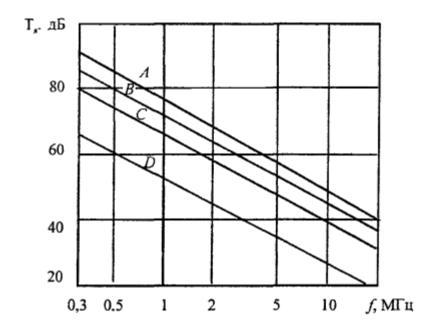
По спектральному составу:

- Широкополосные по уровню 3 дБ ширина полосы частот помех шире полосы частот измерительного приемника
- Узкополосные по уровню 3 дБ ширина полосы частот помех меньше полосы частот измерительного приемника

По времени действия:


- Длительные длительность которых составляет не менее 1 с
- Прерывистые продолжающиеся в течение некоторых периодов времени, разделенных интервалами отсутствия помех.
- Кратковременные (подвид прерывистых) длительность составляет не более 0,2 с

По механизму распространения:


- Излучаемые
- Кондуктивные

По расположению в пространстве:

- Точечное
- Линейное
- Объемное
- Плоскостное

Медианные значения интенсивности индустриальных помех при приеме ненаправленной антенной вблизи поверхности Земли

Зависимость яркостной температуры шумового процесса индустриальных помех:

A – центр крупного города

В – жилые кварталы крупного города

С – сельская местность

D — леса/поля

Нормирование индустриальных помех

Условие обеспечения заданного качества радиоприема с надежностью lpha:

$$\alpha = P\{E_{\rm c}/E_{\rm n} \ge A_0\},\,$$

где $P\{*\}$ - вероятность события $\{*\}, E_{\mathrm{c}}$ - минимальная гарантированная величина напряженности поля сигнала, E_{n} - напряженность поля помехи, A_0 - защитное отношение.

Увеличение мощности передатчика приводит к нерациональному использованию ЧТР

Уменьшение мощности индустриальной помехи на источнике решается на основе моделей СИСПР

Определение расчетных норм индустриальных помех

- Определяется защитное отношение для радиослужб в заданных частотных диапазонах для различных видов помех
- Исходя из значения защитного отношения и минимальной напряженности поля полезного сигнала вычисляется допустимая напряженность поля помехи на приемной антенне РЭС
- Определяется минимальное рабочее расстояние между источником индустриальной помехи и приёмной антенной.
- Вычисляется допустимая напряженность поля помехи на измерительном расстоянии с учетом коэффициента распространения
- Вводятся дополнительные коэффициенты, учитывающие другие факторы потерь при распространении полезного и помехового сигналов к точке приема

- Расчетная норма является грубой оценкой рабочей нормы
- Рабочая норма является компромиссом с учетом экономических факторов
- Нормы на индустриальные помехи устанавливаются для серийно выпускаемых устройств:

Правило 80%-80%:
$$p=q=80\%$$

По крайней мере 80% устройств должно соответствовать нормам с достоверностью 80%

Партия устройств соответствует норме, если:

$$\overline{x_n} + kS_n \le L$$
,

где $\overline{x_n}$ - среднее арифметическое от уровней помех в выборке, L – допустимая норма радиопомехи, k – поправочный коэффицент (зависит от объема выборки), $S_n^{\ 2}=\frac{1}{1-n}\sum(x-\overline{x_n})^2$ - СКО значений помех в выборке.

Измеряемые параметры индустриальных помех

Параметр	Полоса частот	Тип входного устройства	
Напряжение на сетевых и дополнительных зажимах, зажимах нагрузки	0,009-30 МГц	Пробник напряжения, эквивалент сети	
Мощность	30-1000 МГц	Поглощающие клещи	
Напряженность поля	30-300 МГц 300-1000 МГц	Антенны (магнитные и электрические)	
Мощность излучения	1-12,5 ГГц	Антенны СВЧ	
Сила тока	0,009-30 МГц	Токосъёмник	

Нормативные документы: ГОСТ СИСПР

- ГОСТ Р 51318.11-2006 (СИСПР 11:2004) Совместимость технических средств электромагнитная. Промышленные, научные, медицинские и бытовые (ПНМБ) высокочастотные устройства. Радиопомехи индустриальные. Нормы и методы измерений (с Изменением N 1)
- ГОСТ Р 51318.12-2012 (СИСПР 12:2009) Совместимость технических средств электромагнитная. Транспортные средства, моторные лодки и устройства с двигателями внутреннего сгорания. Характеристики индустриальных радиопомех. Нормы и методы измерений для защиты радиоприемных устройств, размещенных вне подвижных средств
- ГОСТ CISPR 24-2013 Совместимость технических средств электромагнитная. Оборудование информационных технологий. Устойчивость к электромагнитным помехам. Требования и методы испытаний

- ГОСТ 30805.13-2013 (CISPR 13:2006)/[ГОСТ Р 51318.13-2006 (СИСПР 13:2006)] Совместимость технических средств электромагнитная.
 Радиовещательные приемники, телевизоры и другая бытовая радиоэлектронная аппаратура. Радиопомехи индустриальные. Нормы и методы измерений
- ГОСТ 30805.14.2-2013 (CISPR 14-2:2001)/[ГОСТ Р 51318.14.2-2006 (СИСПР 14-2:2001)] Совместимость технических средств электромагнитная. Бытовые приборы, электрические инструменты и аналогичные устройства. Устойчивость к электромагнитным помехам. Требования и методы испытаний
- ГОСТ Р 51318.15-99 (СИСПР 15-96) Совместимость технических средств электромагнитная. Радиопомехи индустриальные от электрического светового и аналогичного оборудования. Нормы и методы испытаний
- ГОСТ 30805.16.1.3-2013 (CISPR 16-1-3:2004)/[ГОСТ Р 51318.16.1.3-2007 (СИСПР 16-1-3:2004)] Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1-3. Аппаратура для измерения параметров индустриальных радиопомех и помехоустойчивости. Устройства для измерения мощности радиопомех
- и т.д. на http://docs.cntd.ru

Область применения: точно указывается типы технических устройств, на которые распространяется требования нормативного документа

Оборудование информационных технологий (ОИТ) разделяет на два класса:

- А (применение в промышленной обстановке)
- Б (применение в бытовой обстановке):
 - Оборудование без фиксированного места использования
 - Оконечное оборудование связи с питанием от сети связи
 - Персональные компьютеры и периферия

Нормы: частотные зависимости допускаемых значений параметров индустриальных помех в нормируемой полосе частот.

Параметры индустриальных помех:

Параметр	напряжение	напряженность поля	ток	мощность
Уровень,	1 мкВ	1мкВ/м	1 мкА	1пВт
относительно				
которого				
измеряется				

Задание для самостоятельного решения

Сделать опись электротехнических объектов в локации*, в которых необходимо:

- Указать класс потенциальных источников электромагнитных помех.
- Провести классификацию источников помех
- Указать нормативные документы, под которые попадает данное электротехническое средство (ГОСТ СИСПР)

Результаты оформить в виде таблицы.

* В домашней обстановке согласно месту самоизоляции