Задачи по расчету ЭМС

1

практики

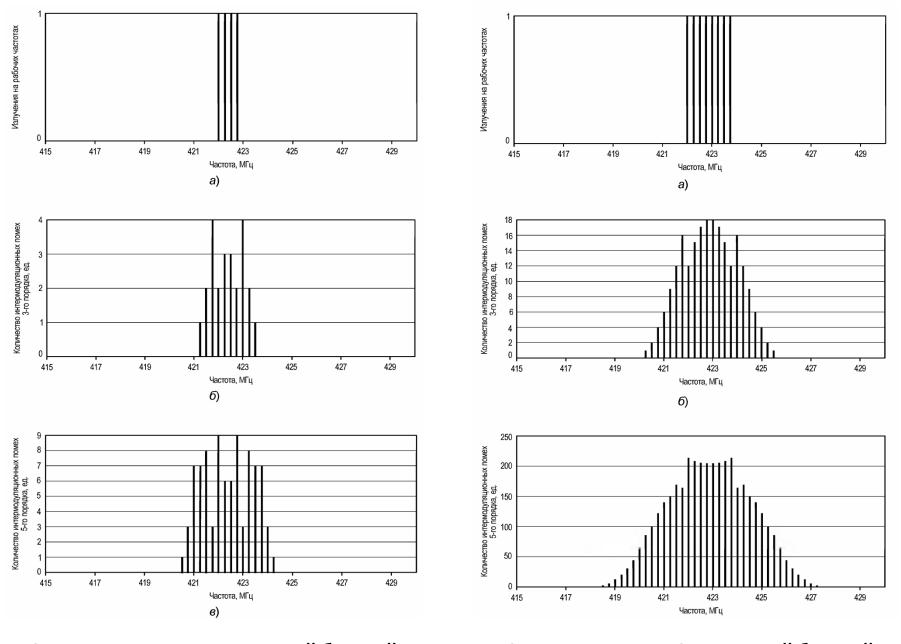
1.

Расчет частот и уровней интермодуляционных излучений

- Интермодуляционные излучения представляют наибольшую опасность, так как образуются в случаях, когда между одновременно работающими радиопередающими устройствами образуется сильная взаимосвязь.
- Частоты интермодуляционных излучений можно определить как:

$$f_{\text{инт}} = \pm m f_1 \pm n f_2 \pm \cdots \pm p f_x,$$

где $f_1, f_2, ..., f_{\chi}$ - частоты передатчиков РЭС, m, n, ..., p — положительные целые числа.


• В инженерной практике для ориентировочного расчета мощности интермодуляционных излучений нечетных порядков можно воспользоваться формулой:

$$P_{\text{инт}} = C_{\text{инт}} + k P_{12}$$

где $C_{\rm инт}=-20~{\rm дБ}$ - постоянная интермодуляции; k — коэффициент пропорциональности (табличное значение); P_{12} - мощность , поступающая от мешающего радиопередающего устройства к на выход передатчика РЭС, в котором возникает интермодуляция.

Методика расчета интермодуляции 3-го порядка:

- Выписываются в возрастающем порядке частоты всех радиопередатчиков объекта и создается Перечень частот №1: f₁, f₂, ..., f_x
- 2. Создаются две копии: Перечень частот №2 и Перечень частот №3
- 3. Для учета помех интермодуляции до 3-го порядка считываются $f_{1N^{\circ}1}$ и $f_{1N^{\circ}2}$, затем из $f_{1N^{\circ}1}+f_{1N^{\circ}2}$ последовательно вычитаются $f_{1N^{\circ}3}, f_{2N^{\circ}3}, \dots, f_{xN^{\circ}3}$.
- 4. Значения частоты интермодуляции $f_{\text{инт}} = f_{1\text{N}^{\circ}1} + f_{1\text{N}^{\circ}2} f_{1\text{N}^{\circ}3}$ и образующие ее частоты заносят в Таблицу No1: Перечень частот интермодуляционных излучений 3-го порядка всех радиопередающих устройств.
- 5. Если f_{инт} попадает в в полосу частот основного и побочных каналов приема, то заносят в Таблицу №2: Частоты интермодуляционных излучений 3-го порядка всех радиопередающих устройств, попадающих в основные и побочные каналы, а также каналы приема помех.

Спектр излучения 4-канальной базовой станции сухопутной подвижной радиосвязи

Спектр излучения 8-канальной базовой станции сухопутной подвижной радиосвязи

Порядок интермодуляции – сумма гармоник мешающих сигналов, участвующих в образовании интермодуляционной помехи.

Порядок интермодуляционной помехи	Комбинации частот мешающих РПД
2	$ f_1 \pm f_2 $
3	$ 2f_1 \pm f_2 , f_1 \pm f_2 \pm f_3 $
4	$ 2f_1 \pm 2f_2 , 3f_1 \pm f_2 , f_1 \pm 3f_2 , 2f_1 \pm f_2 \pm f_3 , f_1 \pm 2f_2 \pm f_3 , f_1 \pm f_2 \pm 2f_3 $
5	$ 3f_1 \pm 2f_2 , 2f_1 \pm 3f_2 , f_1 \pm 4f_2 , 4f_1 \pm f_2 , 2f_1 \pm 2f_2 \pm f_3 , f_1 \pm 2f_2 \pm 2f_3 , f_1 \pm f_2 \pm f_3 \pm f_4 \pm f_5 $

Условие возникновения интермодуляции:

$$|\pm p_1 f_1 \pm p_2 f_2 \pm \dots \pm n f_{i\Gamma}| \le f_{i\Pi^{\mathsf{H}}} \pm \frac{\Delta f_{iX}}{2}$$

где

 $f_1, f_2, ..., f_i$ - частоты мешающих сигналов;

 p_1 , p_2 , ..., p_i - номера гармоник мешающих сигналов;

 $f_{i\Gamma}$ - частота гетеродина приемника i-го РЭС;

 Δf_{iX} - полоса пропускания усилителя промежуточной частоты приемника i-го РЭС на уровне X дБ;

 $f_{i \; \Pi^{\mathrm{H}}}$ - промежуточная частота приемника i-го РЭС.

Расчет энергетических характеристик радиопомех

1. Задача: рассчитать мощность радиопомехи на входе приемника РЭС, если мощность излучения передатчика $P_j=10{\rm BT}$, коэффициенты усиления антенны на частоте помехи $G_{ij}=G_{ji}=0,01$; длина волны помехи $\lambda=1{\rm m}$; $r=10{\rm m}$; коэффициент дополнительных потерь при распространении радиопомехи между антеннами источника и рецептора $K_1=0,05$; коэффициент ослабления радиопомехи за счет несовпадения поляризаций $K_2=1$; коэффициенты ослабления в антенно-фидерном устройстве $K_3=K_4=0,1$.

Решение: Мощность радиопомехи P_{ij} в ваттах от j-го радиопередатчика на входе i-го радиоприемника определяется при расположении антенны i-го радиоприемника в дальней и ближней зоне антенны j-го радиопередатчика как:

$$P_{ij} = \begin{cases} P_{j} \left[\frac{G_{ij}G_{ji}\lambda^{2}}{(4\pi r)^{2}} K_{1}K_{2}K_{3}K_{4} + K_{\text{развязки фидеров}} \right] \text{ при } r \geq 10\lambda_{j\pi} \\ P_{j} \left[K_{\text{развязки антенны}}K_{3}K_{4} + K_{\text{развязки фидеров}} \right] \text{ при } r < 10\lambda_{j\pi} \end{cases}$$

Расчет проведем для дальней зоны, так как выполняется условие: $r=10\lambda_{j\pi}$

Ответ: $P_{ij} = 3,1 \cdot 10^{-8} \, \mathrm{BT}$

Поправочный коэффициент поляризационных потерь K_2

Полярі	изация	Поляризация помеховой радиоволны						
полезной		Горизонтальная		Вертикальная		Наклон-	Круговая	
радиоволны		$G_j < 10$	$G_i \ge 10$	$G_j < 10$	$G_i \ge 10$	ная 45°	Правая	Левая
Горизон-	$G_i < 10$	1	1	0,025	0,025	0,5	0,5	0,5
тальная	$G_i \ge 10$	1	1	0,025	0,01	0,5	0,5	0,5
Верти-	G _i < 10	0,025	0,025	1	1	0,5	0,5	0,5
кальная	$G_i \ge 10$	0,025	0,01	1	1	0,5	0,5	0,5
Наклонная	145°	0,5	0,5	0,5	0,5	1	0,5	0,5
Круговая	Правая	0,5	0,5	0,5	0,5	0,5	1	0,003
	Левая	0,5	0,5	0,5	0,5	0,5	0,003	1

- коэффициент дополнительных потерь при распространении радиопомехи между антеннами источника и рецептора $0.5 < K_1 \le 1 \text{ //} K_1 = 1$
- коэффициент ослабления в антенно-фидерном устройстве i-го РЭС (приемника) $0 < K_3 \le 1$
- коэффициент ослабления в антенно-фидерном устройстве j-го РЭС (передатчика) $0 < K_4 \le 1$
- коэффициент, учитывающий развязку фидеров антенн i-го РЭС (приемника) и j-го РЭС (передатчика) $0 < K_{\rm развязки фидеров} \le 1$ // $K_{\rm развязки фидеров} = 0$
- коэффициент, учитывающий развязку антенн i-го РЭС (приемника) и j-го РЭС (передатчика) $0 < K_{\rm развязки антенн} \le 1$

2. Задача: Рассчитать мощность помехи, приведенной ко входу приемника РЭС, если известно, что мощность радиопомехи $P_{ij}=3.1\cdot 10^{-8}\mathrm{Bt}$, коэффициент ослабления воздействия помехи за счет частотного разноса $K_5=1$; коэффициент ослабления воздействия помехи за счет ее проникновения по побочным каналам приема $K_6=-50$ дБ.

Решение: для расчета воспользуемся формулой

$$P_{ijBX} = P_{ij}K_5K_6 = 3.1 \cdot 10^{-8} \cdot 1 \cdot 10^{-5} = 3.1 \cdot 10^{-13} (BT)$$

Здесь $K_5 = \int_{-\infty}^{\infty} S(f) K^2 (f-\Delta f) df$ показывает, какая доля мощности помехи, поступающей на вход приемника, попадает на вход демодулятора при несовпадении центральной частоты мешающего сигнала с частотой настройки приемника; S(f) - нормированный спектр мощности помехи, K(f) - АЧХ избирательности рецептора помех, Δf - частотная расстройка центральной частоты помехи относительно центральной частоты настройки приемника.

 $K_6=rac{P_{i\,min}}{P_{i\,min}(n)}$, значения которого приводятся в карточках ГКРЧ РФ с тактикотехническими данными РЭС по форме №1 и обычно находятся в пределах $10^{-5}\div 10^{-7}$.

 $P_{i \; min}(n)$ – восприимчивость приемника по n-му побочному каналу приема.

3. Задача: Рассчитать эквивалентную мощность помехи, приведенной ко входу приемника РЭС, если известно, что мощность радиопомехи от первого устройства $P_{ij1}=3.1\cdot 10^{-13}\mathrm{BT}$, мощность второго РЭС $P_{ij2}=8\cdot 10^{-14}\mathrm{BT}$, мощность третьего РЭС $P_{ij3}=2\cdot 10^{-14}\mathrm{BT}$, допустимое значение мощности основной помехи $P_{ik\ доп}=P_{ij\ доп}=3.1\cdot 10^{-13}\mathrm{BT}$.

Решение: Применим замену групповой помехи одной эквивалентной:

$$P_{i\Sigma} = \sum_{j=1}^{n} P_{ij} (P_{ik \text{ доп}} / P_{ij \text{ доп}})$$

Тогда получим:

$$\frac{P_{ik \text{ доп}}}{P_{ij \text{ доп}}} = 1$$

$$P_{i\Sigma} = 3.1 \cdot 10^{-13} + 8 \cdot 10^{-14} + 2 \cdot 10^{-14} = 4.1 \cdot 10^{-13} (BT)$$

4. Задача: рассчитать эквивалентную мощность радиопомехи, приведенной ко входу приемника РЭС, при интермодуляции в приемнике, если известно, что коэффициент интермодуляции $K_{i\text{ инт}}=0.25$; уровень сигнала, соответствующий чувствительности приемника РЭС $P_{i\text{ мин}}=1\cdot 10^{-13}\mathrm{Bt}$; мощность уровня радиопомехи на рабочих частотах f_{j1} и f_{j2} : $P_{ij1}=P_{ij2}=1\cdot 10^{-8}\mathrm{Bt}$; уровень двух одинаковых сигналов на входе приемника, создающих интермодуляцию при заданном коэффициенте интермодуляции $P(f_{j1},f_{j2})=1\cdot 10^{-7}\mathrm{Bt}$

Решение: возможность возникновения интермодуляции проверяют только в том случае, если на вход приемника РЭС воздействуют радиопомехи от нескольких передатчиков и хотя бы одна из них является непрерывной или импульсной с малой скважностью.

Для расчета воспользуемся формулой для расчета интермодуляции 3-го порядка, создаваемой при действии на его входе двух сигналов, частоты которых не совпадают с частотами основного и побочных каналов приема:

$$P_{ij \text{ инт}} = \frac{P_{ij_1}P_{ij_2}K_{i \text{ инт}}P_{i \text{ мин}}}{P^3(f_{j_1},f_{j_2})} = 0.25 \cdot 10^{-16} \text{ (BT)}$$

Условие проникновения радиопомехи:

$$\left| pf_j - \frac{n}{m} f_i - \eta f^{(i)}_{i \Pi^q} \frac{n+m}{m} \right| \leq \frac{\Delta f_{jX}(p,m) + \Delta f_{iX}}{2}$$

где

 $p=1,2,...,p_{max}$ - номер гармоники несущей частоты передатчика, для практических расчетов $p_{max}\leq 5$;

 $n=1,2,\ldots,n_{max}$ - номер гармоники частоты гетеродина приемника, $n_{max}\leq 5;$

m=1,2,... , m_{max} - номер побочного канала приема $m_{max} \leq 5$;

 f_i - несущая частота передатчика j-го РЭС;

 f_i - частота настройки i-го РЭС;

 η - признак настройки гетеродина: $\eta = \begin{cases} 1 \text{ верхняя настройка} \\ -1 \text{ нижняя настройка} \end{cases}$

 $f^{(i)}{}_{i\, \mathrm{пч}}$ - первая промежуточная частота приемника i-го РЭС;

 $\Delta f_{jX}(p,m)$ - полоса частот радиоизлучения j-го РЭС на p-ой гармонике и уровне X дБ в m-ом побочном канале приема;

 Δf_{iX} - полоса пропускания усилителя промежуточной частоты приемника i-го РЭС на уровне X дБ.

3.

Коэффициент ослабления электромагнитных волн в металлах *К,* дБ/мм

$$K_{\Pi} = K \cdot d$$

где d — толщина экрана, K_{Π} - коэффициент экранирования, K — коэффициент ослабления в зависимости от металла.

Частота,	Металл					
МГц	Сталь	Медь	Алюминий	Цинк	Латунь	
0,1	47,6	32,3	29,5	26,4	25,6	
0,3	52,0	37,1	34,3	31,2	26,8	
1,0	56,5	42,3	39,5	37,5	35,6	
3,0	60,8	47,2	44,1	40,8	40,0	
10,0	65,6	52,3	49,5	46,4	45,6	
30,0	69,5	57,1	54,3	51,1	50,4	
100,0	75,6	62,3	59,5	56,3	55,6	
300,0	77,4	67,6	64,1	60,8	60,0	
1000,0	81,6	72,3	69,5	66,4	65,6	

Задача: Рассчитать минимальную толщину стенок экранирующего стального бокса для установки приемника РЭС, если в месте установки имеется мощная помеха на частоте 320 МГц, плотность потока энергии 5Вт/см². Допустимый уровень помехи 1 мВт/см².

Решение:

1. Находим коэффициент экранирования:

$$K_{\Pi} \ge 10 \text{ lg } (E H/E_{3} H_{3}) = 10 \text{ lg } (5000/1) \approx 37 \text{ (дБ)}$$

 Табличное значение ослабления для стали по таблице 77.4 дБ/мм на частоте 300 МГц ⇒ частота условия больше, значит, можно использовать, так как с ростом частоты эффективность использования экрана растет. Значит, рассчитаем расстояние:

$$K_{\Pi} = Kd \Rightarrow d \geq K_{\Pi}/K = 37/77,4 \approx 0,5 \text{ (MM)}$$

Ответ: не менее 0,5 мм

Потери эффективности сигнала Wi-Fi при прохождении через различные среды

Препятствие	Дополнительные потери (dB)	Эффективное расстояние*
Открытое пространство	0	100%
Окно без тонировки (отсутствует металлизированное покрытие)	3	70%
Окно с тонировкой (металлизированное покрытие)	5-8	50%
Деревянная стена	10	30%
Межкомнатная стена (15,2 см)	15-20	15%
Несущая стена (30,5 см)	20-25	10%
Бетонный пол/потолок	15-25	10-15%
Монолитное железобетонное перекрытие	20-25	10%

^{*}Эффективное расстояние означает, насколько уменьшится радиус действия после прохождения соответствующего препятствия по сравнению с открытым пространством.

Расчет допустимой мощности помех на входе приемника РЭС

1. Задача: рассчитать допустимую мощность радиопомехи на входе приемника i-го РЭС, если известно, что средняя мощность полезного сигнала на входе приемника i-го РЭС $P_{ic}=-130$ дБВт; требуемое защитное отношение A=10 дБ.

Решение: учтем, что P_{ic} обычно соответствует конкретному уровню принимаемого сигнала и не равно $P_{\rm c\ MИH}$, соответствующему пороговой чувствительности приемника РЭС, выступающего рецептором помехи.

Тогда:

$$P_{i\,\text{доп}} = P_{ic} - A = -130 - 10 = -140 \text{ (дБВт)}$$

2. Задача: рассчитать допустимое значение мощности радиопомехи на входе приемника РЭС при учете явлений блокирования и перекрестных искажений, если известно, что уровень сигнала, соответствующий чувствительности приемника РЭС $P_{i \text{ мин}} = -133 \text{ дБВт}$; динамический диапазон по блокированию и перекрестным искажениям $D_i = 80 \text{ дБ}$.

Решение: учтем, что допустимые мощности непреднамеренных помех на входе приемника, вызывающие приемлемые эффекты блокирования и перекрестных искажений, равны. Тогда:

$$P_{i \text{ доп (бл)}} = P_{i \text{ доп (пи)}} = P_{i \text{ мин}} + D_i = -133 + 80 = -53 \text{ (дБВт)}$$