лабораторная работа 8

АСЕ и анализ работы приложений

Цель

- Знакомство с OPNET Application Characterization Environment (ACE)
- Овладение навыками поиска 'узких мест' в работе приложения
- Анализ влияния характеристик сети на работу приложения

Методические указания

Файл трассировки и AppDoctor:

- 1. Запустите OPNET Modeler $14.5 \Longrightarrow$ в меню File выберите Open...
- 2. В выпадающем меню Files of type выберите ACE Files (*.atc.m)
 ⇒ в выпадающем меню Look in перейдите в
 C:/Program Files/OPNET/14.5.A/models/std/tutorial_req/module
 ⇒ выберите FTP_with_loss.atc ⇒ нажмите Open
 - Файл трассировки **FTP_with_loss** был получен на реальной сети, аналогичной нижепредставленной
 - Передача файла объемом 1 МБ по протоколу FTP осуществляется от сервера к клиенту, скорость доступа которого составляет 768 кбит/с, задержка на участке сети Frame Relay равна 36 мс
 - Загрузка файла занимает 37 секунд вместо расчетных 11 $(8*1024*1024/768*1024\approx 10.7\ {\rm c})$

• Задача: найти причину большой задержки и исследовать влияние различных сетевых характеристик (скорость передачи данных, потери пакетов) на работу приложения

- 3. В открывшемся окне Getting Started Analyzing an Application Transaction выберите Data Exchange Chart
 - В результате в окне **ACE** будет в графическом виде представлен обмен пакетами между FTP сервером и клиентом

- 4. В меню View уберите галочку напротив Embed Protocol Decode Viewer
- 5. В выпадающем меню выберите Application and network charts
 - Обратите внимание, что **Application chart only** показывает лишь обмен данными прикладного уровня между клиентом и сервером
 - В свою очередь, **Network chart only**, помимо данных прикладного уровня, также отображает передачу служебной информации протоколов нижних уровней
 - Эти протоколы осуществляют сегментацию передаваемых данных, добавляют заголовки, осуществляют квитирование для защиты от ошибок и т.п.
 - Все это может оказывать влияние на качество предоставления услуги

 Чтобы увидеть передачу отдельных сообщений, в меню View выберите Set Visible Time Range ⇒ установите значение параметра Start Time равным 25.2, а значение параметра End Time – равным 25.5 ⇒ нажмите OK

- В результате на **Application Message Chart** будет представлена передача одного сообщения от FTP сервера к клиенту
- Чтобы увидеть объем переданных данных прикладного уровня, наведите курсор на соответствующую стрелку (FTP Server -> Client Payload показан равным 8192 байт)
- Согласно Network Packet Chart, в ходе пересылки этих данных был передан ряд пакетов: больших (обозначены синим и зеленым цветами) от сервера к клиенту и маленьких (обозначены красным цветом) от клиента к серверу
- Эти маленькие пакеты не содержат данных прикладного уровня (Application payload size равен 0 байт) и являются ACK-сегментами протокола TCP

- 7. Чтобы увидеть структурный состав задержки доставки данных, в меню **AppDoctor** выберите **Summary of Delays (AppDoctor Analysis)** ⇒ в открывшемся окне поставьте галочку в поле **Show Values**
 - Обратите внимание, что источником основной составляющей задержки является работа протокола(ов) (69.0%)

- Низкая скорость передачи данных (768 кбит/с по условию задачи) находится на втором месте по значимости в общей структуре задержки (29.9%)
- Задержка, вносимая работой самого FTP сервера, в данном случае крайне мала (0.5%)
- 8. Закройте окно AppDoctor

- 9. Для более детального анализа в меню AppDoctor выберите Diagnosis
 - Красным цветом выделены 'узкие места' (bottlenecks)
 - Ниже в окне приведены рекомендации по их устранению и дополнительные пояснения
- 10. Закройте окно AppDoctor
- 11. Чтобы посмотреть статистику по файлу трассировки, в меню AppDoctor выберите Statistics
 - Обратите внимание, что из 1281 пакетов (Network Packets) 52 пакета (Retransmissions) были переданы повторно, т.е. доля повторных передач составляет примерно 4%
- 12. Закройте окно **АррDoctor**

AppDoctor - FTP_with_loss							
Summary of Delays Execution	ve Summary Diag	nosis Statistics					
Total	Client	FTP Server					
Processing No Bottleneck No Bottleneck							
	Total	Client <-> FTP Server					
Protocol Overhead	No Bottleneck	No Bottleneck					
Chattiness	No Bottleneck	No Bottleneck					
Network Effects of Chattiness	No Bottleneck	No Bottleneck					
Effect of Latency	No Bottleneck	No Bottleneck					
Effect of Bandwidth	Potential Bottleneck	Potential Bottleneck					
Effect of Protocol	Bottleneck	Bottleneck					
Effect of Congestion	No Bottleneck	No Bottleneck					
Connection Resets	No Bottleneck	No Bottleneck					
Retransmissions	Bottleneck	Bottleneck					
Out of Sequence Packets	Bottleneck	Bottleneck					
TCP Windowing (A -> B)	Not Applicable	No Bottleneck					
TCP Windowing (A <- B)	Not Applicable	No Bottleneck					
TCP Frozen Window	No Bottleneck	No Bottleneck					
TCP Nagle's Algorithm	No Bottleneck	No Bottleneck					
1							
Protocol delay is contributing significantly to the application response time. Consider changing the parameters of $_$ \square \underline{M} ew values your transport protocol or using a WAN optimization device.							
Threshold: 30.0%, Value: 69.0% - lower values are better.							
Click on "Help" for detailed explanations and recommendations.							
Export to Spreadsheet Help							
		Update Qose					

- 13. Чтобы посмотреть статистику в графическом виде, в меню View выберите Graph Statistics
- 14. В открывшемся окне выберите *2 метрики*: Network Throughput (Kbits/sec): Client to FTP Server и Network Throughput (Kbits/sec): FTP Server to Client ⇒ нажмите Show
- 15. Затем выберите *другие 2 метрики*: Retransmissions: Client to FTP Server и Retransmissions: FTP Server to Client ⇒ установите значение параметра Bucket width (msec) равным 100 ⇒ нажмите Show

Определение оптимального размера окна приемника TCP:

1. В окне Graph Statistics выберите новую метрику: TCP In-Flight Data (bytes) FTP Server to Client \implies установите значение параметра Bucket width (msec) равным 1000 \implies нажмите Show

AppDoctor - FTP_with_lo	ISS			
ummary of Delays Executive Summary Diagnosis			Statistics	
1	Total	Client	TP Server	^
User Think Time (sec) 0	000000	0.000000	lot Applicable	
Effect of Processing (sec) 0	.181852	0.000119).181733	
Effect of Network (sec) 3	37.098266	Not Applicable	lot Applicable	
Parallel Effects (sec) 0	000000.	Not Applicable	lot Applicable	-
4				► E
		Total	Client <-> FTP Server	-
Duration (sec)		37.280119	37.280119	
Response Time (sec)		37.280119	37.280119	
Application Turns		4	4	
Application Messages		241	241	
Application Data (bytes)		1,057,043	1,057,043	
Average Application Messag	e (bytes)	4,386.07	4,386.07	
Network Packets		1,281	1,281	
Network Data (bytes)		1,201,409	1,201,409	
Average Network Packet (by	/tes)	937.87	937.87	
Latency (ms)		Not Applicable	36.00	
Effect of Latency (sec)		0.144000	0.144000	
Bandwidth (Kbps)		Not Applicable	768.000	
Effect of Bandwidth (sec)		11.146865	11.146865	
Effect of Protocol (sec)		25.739874	25.739874	
Effect of Congestion (sec)		0.067527	0.067527	
Max Application Bytes Per Tu	um (A -> B)	Not Applicable	23	
Max Application Bytes Per Tu	um (A <- B)	Not Applicable	1,056,891	
Max Unacknowledged Data	(A -> B) (bytes)	Not Applicable	10	
Max Unacknowledged Data	(A <- B) (bytes)	Not Applicable	8,192	
Retransmissions		52	52	
Out of Sequence Packets		41	41	
Connection Resets		0	0	
TCP Frozen Window (sec)		0.000000	0.00000	
TCP Nagle's Algorithm (sec)		0.000000	0.000000	
TCP Triple-Duplicate ACK Lo	ass Indications	34	34	•
Export to Spreadsheet				Help
			<u> </u>	pdate <u>C</u> lose

2. Согласно расчетам программы, оптимальный размер окна приемника TCP примерно равен 7,000 байт (красная линия Bandwidth Delay Product (Ideal In-Flight Data) на графике)

Анализ влияния пропускной способности сети:

- 1. Чтобы рассмотреть, как пропускная способность сети влияет на качество обслуживания, в меню Simulation выберите QuickPredict
- 2. В окне QuickPredict Control установите значение параметра Latency

равным 36ms, а значения параметров Min Bandwidth и Max Bandwidth равными 512Kbps и 10Mbps, соответственно \implies нажмите Update Graph

- 3. Получившийся в результате график должен быть аналогичен нижеприведенному
- 4. Закройте окно с графиком, окно QuickPredict Control и окно ACE

K QuickPredict Control - FTP_with_loss	×	
Choose network path to modify: Client <> FTP Server Graph Properties Xaxis: Bandwidth CLate cy Min Bandwidth 512Kbp, Max Bandwidth 10Mbps Choose Values Latency 36ms	The current graph shows the impact of bandwidth on overall application response time. The X-axis shows varying bandwidths between "Client" and "FTP Server". You can put latency on the X-axis by selecting the "Latency" radio button. Latency is one-half the total round trip (ping) time. Bandwidth is the minimum line rate (i.e., the capacity of the slowest link between two tiers).	
Oms 300ms	_	
	Update Graph Add Curve(s) Compare	
Load Template	Advanced	

Предиктивный анализ:

- 1. OPNET Application Characterization Environment (ACE) позволяет провести предиктивный анализ и ответить, например, на вопрос о работе приложения FTP при одновременном обращении к нему 100 пользователей по IP-сети
- 2. Для этого в окне **OPNET Modeler 14.5** в меню **File** выберите **New...** ⇒ выберите **Project** ⇒ нажмите **OK** ⇒ озаглавьте проект как *номер_вашего_студенческого_FTP*, а сценарий – как *ManyUsers* ⇒ нажмите **OK**

🔣 Create ACE Topology	×						
Specify parameters to create a network topology for application: FTP Application							
Number of Clients: 100	1. Specify the number of clients running the application. If more than one client is specified, a						
Packet Analyzer: N/A	'LAN' node is used to represent the clients. 2. Packet Analyzer captures packets in the						
Client Location: Remote	simulated network. It is not selectable if the						
WAN details	3. The default client location is based on						
Technology: IP	information obtained from the ACE trace files. 4. For a remote client location, WAN parameters						
Packet Latency (msec): 40	can be specified - technology, packet latency, etc.						
Packet Loss Ratio (0-100): 0	Note the following for configuring detailed PVC						
Access Bandwidth (kbps): 1536	parameters:						
	Create Cancel						

- 3. В окне Startup Wizard: Initial Topology выберите Import from ACE => нажмите Next
- 4. В открывшемся окне Configure ACE Application установите следующие *З значения* ⇒ нажмите Next
- 5. В открывшемся окне **Create ACE Topology** установите следующие *4 значения* ⇒ нажмите **Create** ⇒ сохраните проект
- 6. В результате будет создана топология, аналогичная нижеприведенной
 - Объекты Tasks, Applications и Profiles окажутся сконфигурированы согласно файлу трассировки и установленным ранее значениям параметров
- 7. На панели инструментов нажмите кнопку Configure/Run Discrete Event Simulation (DES)
- 8. Запустите имитационное моделирования, используя настройки по умолчанию
- 9. По окончании сохраните проект
- 10. В меню **DES** выберите **Results** \implies выберите **View Results**... \implies откройте иерархические меню Global Statistics и Custom Application \implies выберите Application Response Time (sec)
- 11. Получившийся в результате график должны быть аналогичен нижеприведенному

Задания для самостоятельного выполнения

- 1. Объясните, почему пакеты, передаваемые от клиента к FTP серверу, имеют, в основном, малый размер?
- 2. Используя данные из окна **AppDoctor Summary of Delays**, объясните, какое влияние на время загрузки по протоколу FTP окажет:
 - Апгрейд сервера
 - Апгрейд сети
 - Апгрейд протокола(ов)
- Объясните, как повторные передачи пакетов влияют на время передачи файла по протоколу FTP?
- 4. Какой из данных протоколов отвечает за повторную передачу пакетов: IP, TCP или FTP?

- 5. На ранее полученном графике Network Throughput (Kbits/sec), скорость передачи от FTP сервера к клиенту составляет в среднем около 250 кбит/с с пиком до 400 кбит/с. В то же время номинальная скорость равна 768 кбит/с. Объясните, почему фактическая скорость передачи данных оказывается ниже номинальной?
- 6. Определение оптимального размера окна приемника TCP в байтах осуществляется по формуле:

 $\frac{2 \times \text{Propagation Delay (seconds)} \times \text{Transmission Speed (bits/second)}}{8 \text{ (bits/byte)}}$

Используя данные из окна **AppDoctor Statistics**, проверьте расчетное значение на графике **TCP In-Flight Data (bytes)**, примерно равное 7,000 байт

7. Проанализируйте ранее полученный график Impact of Bandwidth on Response Time. Почему, начиная с какого-то момента, увеличение пропускной способности сети не сокращает время отклика приложения?

К защите

- 1. По результатам работы представить отчет, содержащий:
 - Графики, полученные в ходе имитационного моделирования
 - Выводы по результатам моделирования
- 2. Знать основы построения инфокоммуникационных систем и сетей