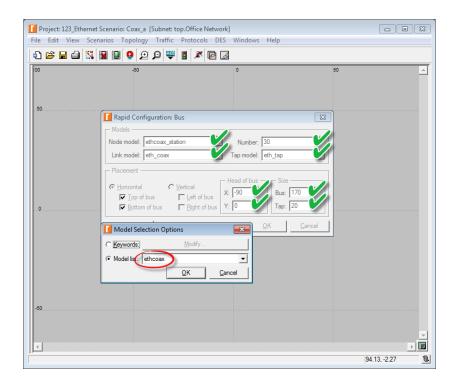
лабораторная работа 2

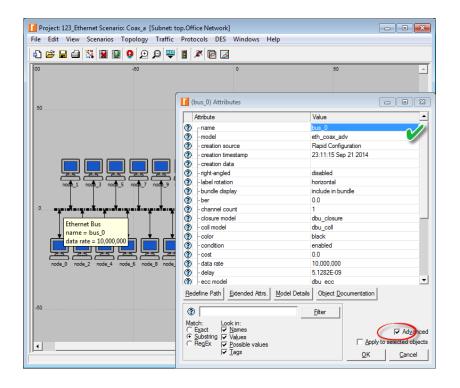
Ethernet и управление доступом к среде передачи

Цель

- Знакомство с технологией CSMA/CD
- Овладение навыками моделирования сети Ethernet
- Анализ влияния нагрузки на работу сети с топологией 'шина'

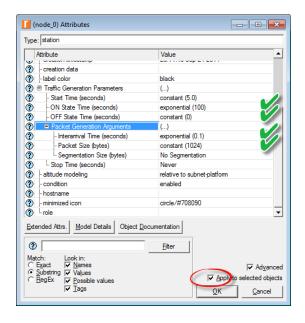
Методические указания


Создание нового проекта:


- 1. Запустите Riverbed Modeler Academic Edition ⇒ в меню File выберите New...
- 2. Выберите **Project** \Longrightarrow нажмите **OK** \Longrightarrow озаглавьте проект как < номер вашего студенческого>_Ethernet, а сценарий как < соах_а > нажмите **OK**
- 3. В окне Startup Wizard: Initial Topology выберите Create empty scenario ⇒ нажмите Next ⇒ в списке Network Scale выберите

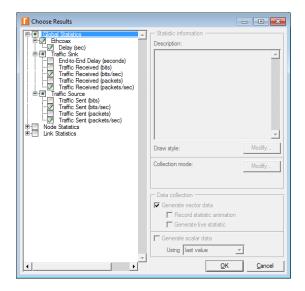
 Office ⇒ нажмите Next
- 4. В окне Startup Wizard: Specify Size в поле X Span введите 200, в поле Y Span введите $100 \implies$ дважды нажмите Next \implies нажмите Finish
- 5. Закройте открывшееся окно Object Palette

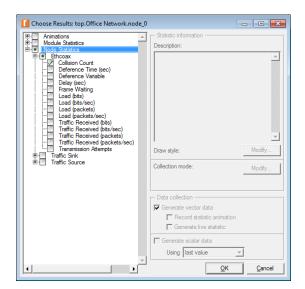
Создание сети Ethernet с топологией 'шина':


- 1. В меню Topology выберите Rapid Configuration...
- 2. В выпадающем меню Configuration выберите $Bus \implies$ нажмите Next
- 3. В открывшемся окне Rapid Configuration: Bus нажмите Select Models... \Longrightarrow в выпадающем меню Model list выберите $ethcoax \Longrightarrow$ нажмите OK
- 4. В окне **Rapid Configuration: Bus** установите следующие *8 значений* (см. на рисунке ниже) \Longrightarrow нажмите **OK**
- 5. Чтобы сконфигурировать общую шину, щелкните правой кнопкой на горизонтальной линии (Ethernet Bus) \Longrightarrow в открывшемся меню выберите Edit Attributes (Advanced)
- 6. Щелкните левой кнопкой на параметре ${\it eth_coax} \Longrightarrow$ в выпадающем меню выберите ${\it Edit...} \Longrightarrow$ в открывшемся списке выберите ${\it eth_coax_adv} \Longrightarrow$ нажмите ${\it OK}$
- 7. Установите значение параметра thickness равным $5 \implies$ нажмите \mathbf{OK}

Генерация трафика:

- 1. Щелкните правой кнопкой на любом из 30 узлов ⇒ выберите Select Similar Nodes, чтобы выделить разом все узлы в сети
- 2. Щелкните правой кнопкой на любом из выделенных 30 узлов \Longrightarrow в появившемся меню выберите Edit Attributes
- 3. В открывшемся окне поставьте галочку в поле **Apply to selected objects**, чтобы избежать необходимости конфигурировать каждый узел в отдельности
- Откройте иерархическое меню Traffic Generation Parameters ⇒ измените значение параметра ON State Time на exponential(100) , а параметра OFF State Time на constant(0)
- 5. Откройте иерархическое меню Packet Generation Arguments ⇒ измените значение параметра Packet Size (bytes) на constant(1024)
- 6. Установите значение параметра Interarrival Time (seconds) как $exponential(0.1) \implies$ нажмите OK
- 7. В открывшемся окне Warning нажмите $Yes \Longrightarrow$ сохраните проект


Сбор статистики:


- 1. Щелкните правой кнопкой где-либо на рабочей области (но не на одном из элементов сети) ⇒ в появившемся меню выберите Choose Individual DES Statistics ⇒ откройте иерархическое меню Global Statistics
- 2. Откройте иерархическое меню **Ethcoax** \Longrightarrow выберите *Delay (sec)*
- 3. Откройте иерархическое меню $Traffic\ Sink \Longrightarrow$ выберите $Traffic\ Received\ (bits/sec)$
 - и Traffic Received (packets/sec)
- 4. Откройте иерархическое меню **Traffic Source** \Longrightarrow выберите *Traffic Sent (bits/sec)*
 - и Traffic Sent (packets/sec)
- 5. Нажмите ОК
- 6. Щелкните правой кнопкой на узле $node_0 \implies$ в появившемся меню выберите Choose Individual DES Statistics \implies откройте иерархическое меню Ethcoax \implies выберите $Collision\ Count \implies$ нажмите OK

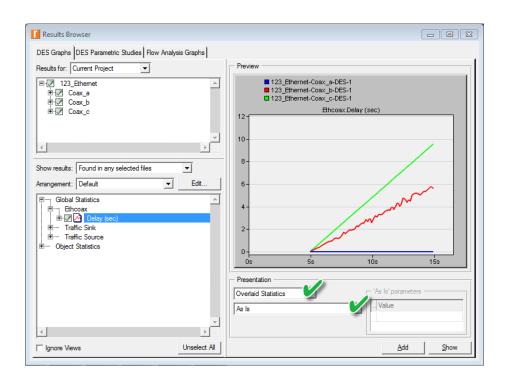
Настройка и запуск имитационного моделирования:

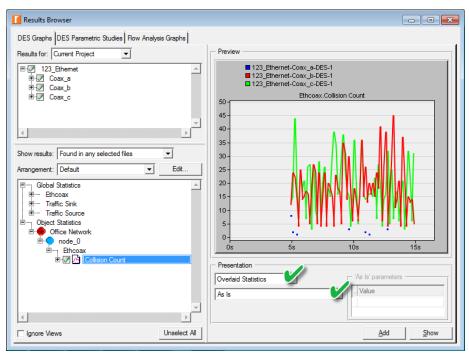
1. На панели инструментов нажмите кнопку Configure/Run Discrete Event Simulation (DES)

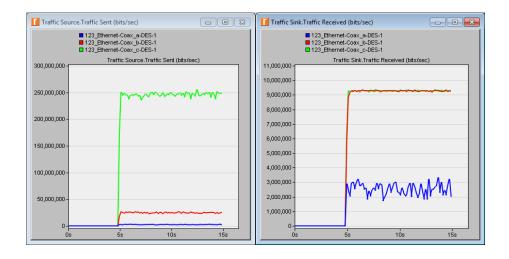
- 2. В открывшемся окне **Configure/Run DES** установите значение параметра **Duration** равным 15 second(s)
- 3. Чтобы запустить моделирование, нажмите **Run**
- 4. По окончании нажмите $\mathbf{Close} \Longrightarrow \mathbf{coxpanute}$ проект

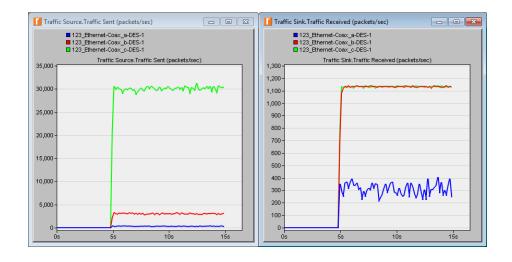
Создание копий сценария:

Анализ влияния интервала между поступлениями пакетов на работу сети:

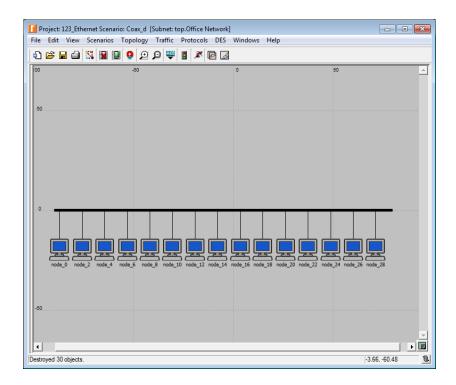

- 1. Создайте 2 копии сценария $\mathbf{Coax}_{\mathbf{a}}$ и озаглавьте их как $\boxed{\mathit{Coax}_{\mathbf{b}}}$ и $\boxed{\mathit{Coax}_{\mathbf{c}}}$
 - Чтобы создать копию сценария, в меню Scenarios выберите Duplicate Scenario... \Longrightarrow присвойте имя копии \Longrightarrow нажмите OK
 - Для переключения между сценариями в меню **Scenarios** выберите **Switch To Scenario** \Longrightarrow выберите нужный сценарий
- 2. Для всех узлов установите значение параметра Interarrival Time (seconds) как:
 - В сценарии **Coax** b: *exponential(0.01)*
 - В сценарии Coax_c: exponential(0.001)
 - Чтобы сконфигурировать все узлы разом, используйте опции Select Similar Nodes и Apply to selected objects
- 3. Произведите запуск имитационного моделирования для созданных копий


Просмотр результатов моделирования:

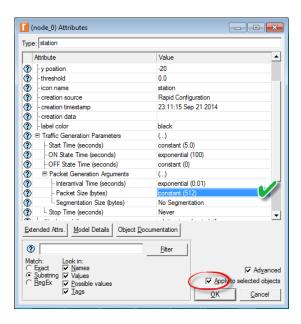

- 1. В меню DES выберите Results \Longrightarrow выберите Compare Results...
- 2. В открывшемся окне Results Browser выберите все 3 сценария
- 3. Откройте иерархическое меню Global Statistics \Longrightarrow выберите метрику


 | Delay (sec) | \Longrightarrow в выпадающих меню выберите Overlaid Statistics

 и As Is \Longrightarrow нажмите Show
- 4. Аналогично постройте графики для метрик:
 - Collision Count для узла node 0
 - Traffic Sent (bits/sec)
 - Traffic Received (bits/sec)
 - Traffic Sent (packets/sec)
 - Traffic Received (packets/sec)
- 5. Получившиеся в результате графики должны быть аналогичны нижеприведенным



Задания для самостоятельного выполнения


Анализ влияния количества станций на работу сети:

- 1. Создайте копию сценария $Coax_b$ и озаглавьте ее как $Coax_d$
- 2. В этом новом сценарии удалите все узлы с нечетными номерами (node_1, node_3, ..., node_29) как показано на рисунке ниже
- 3. Запустите имитационное моделирование для сценария Соах d
- 4. По окончании сохраните проект
- 5. Для сценариев *Coax_b* и *Coax_d* постройте сравнительные графики:
 - Traffic Sent (packets/sec)
 - Delay (sec)
- 6. Проанализируйте полученные графики

Анализ влияния размера пакета на работу сети:

- 1. Создайте копию сценария **Coax b** и озаглавьте ее как *Coax* **e**
- 2. В этом новом сценарии для всех узлов установите значение параметра Packet Size (bytes) как constant(512)
 - Обратите внимание, что в предыдущих сценариях размер пакета был равен 1024 байт
 - Чтобы сконфигурировать все узлы разом, используйте опции Select Similar Nodes и Apply to selected objects
- 3. Запустите имитационное моделирование для сценария Соах_е
- 4. По окончании сохраните проект
- 5. Для сценариев *Coax_b* и *Coax_e* постройте сравнительные графики:
 - Delay (sec)
 - Traffic Sent (bits/sec)
 - Traffic Received (bits/sec)
 - Traffic Sent (packets/sec)
 - Traffic Received (packets/sec)
- 6. Проанализируйте полученные графики

К защите

- 1. По результатам работы представить отчет, содержащий:
 - Графики, полученные в ходе имитационного моделирования
 - Выводы по результатам моделирования
- 2. Знать основы построения инфокоммуникационных систем и сетей