

Рис.2 Временное разделение каналов

Т.о. в *N*-канальной системе д.б. организовано *K*=*N*+1 временных каналов. Функциональная схема многоканальной системы передачи (МСП) с ВРК приведена на рис.3.

- ГО генераторное оборудование;
- ВС временной селектор;

с/сигн. – сигнал синхронизации (синхросигнал).

Рис.3. Функциональная схема трёхканальной системы передачи с ВРК.

Аналоговые сигналы.

Аналоговый сигнал является непрерывной функцией времени, т.е. существует во все моменты времени и в *каждый* момент своего существования принимает одно из бесконечного числа значений.

Дискретные сигналы.

Дискретный сигнал существует только на определённых временных интервалах (в пределе – в определённые моменты времени) и в *каждый момент* своего существования принимает *одно* из *бесконечного* числа значений.

Рис.2 Дискретный сигнал

Квантованные сигналы.

Квантованный сигнал существует во все моменты времени, но в *каждый момент* своего существования принимает *одно* из *конечного* числа разрешённых значений. Исключение составляют только переходы от одного разрешённого значения к другому.

Рис.3 Квантованный сигнал (U_i – разрешённые значения)

Цифровые сигналы.

Цифровой сигнал это дискретный квантованный сигнал. Т.е. он существует только на определённых временных интервалах и на *каждом интервале* своего существования принимает *одно* из *конечного* числа разрешённых значений.

Отличие в приёме аналоговых и цифровых сигналов

аналоговый сигнал усиливается B точке приёма (вместе с помехами) и корректируется, подавляются помехи за пределами полосы Задача пропускания канала. как можно точнее восстановить _ Ha передаваемый сигнал. выходе переприёмного **устройства** (промежуточного корректирующего усилителя) имеем исходный сигнал с искажениями (любой корректор обладает оставшимися конечной точностью коррекции) и помехами. Таким образом, в линейном тракте происходит накопление помех и искажений, что приводит к ограничению дальности связи, т.к. суммарный уровень помех на выходе канала не должен превышать допустимое для данного вида услуг значение.

Цифровой сигнал в точке приёма проходит те же этапы обработки, что и аналоговый, т.е. усиливается и корректируется, подавляются помехи за пределами полосы пропускания канала. Но цель этой обработки не точное восстановление сигнала, а подготовка к следующему этапу – принятию решения.

Т.к. цифровой сигнал на каждом интервале своего существования принимает одно из конечного числа разрешённых значений, то в точке приёма все варианты (алфавит) единичных элементов сигнала заранее известны. Т.о. переходим от задачи оптимального восстановления к задаче оптимального различения.

Скорректированный поступает (рис.5) сигнал на решающее устройство (РУ), которое принимает решение о том, какой единичный передан. Это решение поступает элемент был на выходной формирователь, формирующий соответствующий вариант единичного элемента. Информация о частоте следования единичных элементов выделяется из принимаемого сигнала выделителем тактовой частоты (BTY).

Рис.5 Упрощённая функциональная схема регенератора

Такой способ обработки сигнала называется регенерацией, а переприёмное устройство – регенератором. Регенерация это повторное создание каждого элемента сигнала, а не "полное восстановление" как пишут некоторые авторы. Восстановление предполагает формирование выходного сигнала из входного, в то время как через регенератор входной сигнал не проходит, а выходной сигнал создаётся выходным формирователем в соответствии с принятым решением.

а) передаваемый сигнал

Рис.4 Сигналы АИМ-1 и АИМ-2

Рис.5 Квантование

Кодовые таблицы

Сравнение плезиохронных (PDH) и синхронной (SDH) иерархий.

\sim 1			1	
Ο ΓΕΝΟΡΗΤΙΑ ΦΗΣΗΠΑΓΚΗΑΙ	и эпектпицеские	vanavrenueruvu	CTLIVOD HUMBODLIV	KARAUUD
		Λαρακτορήστηκή		Kanajiob
1	1	1 1	' 11	

Наименование	Нормиро-	Максималь-	Скорость	Код	Тип	Затухание СЛ	Выходное	Номинальное	Пиковое
сетевого стыка	ванная	ный допуск	передачи	стыка	соедини-	(дБ)	сопротивление	пиковое	напряжение
	скорость	на скорость	символов		тельной	/	передатчика;	напряжение	пробела
	передачи	передачи в	(кБод)		линии	на частоте	входное	импульса	(B)
	(кбит/с)	миллионных			(СЛ)	(кГц)	сопротивление	(B)	
		долях					приёмника		
		(ppm)					(Ом)		
1	2	3	4	5	6	7	8	9	10
Сетевой стык	64	± 100	64	AMI	симм. пара		120	1	$0 \pm 0,1$
ОЦК (Е0)						0 0 1 0 0			
(G.703.1.2.3						0 - 3 / 32			
противо-									
направленный)				~			100		
(G./03.1.2.1 co-	64	± 100	256	Спец.	симм. пара	0 - 3 / 128	120	l	$0 \pm 0,1$
направленный)				код				-*	
TOCT 26886-86	64	±50	128	ОБС	симм. пара	0-6/64	120	3	-
ПЦК	2048	± 50	2048	HDB-3	симм. пара	0-6/1024	120	3	0 ± 0,3
(E12)					коакс. пара	0-6/1024	75	2,37	$0 \pm 0,237$
ВЦК (Е22)	8448	±30	8448	HDB-3	коакс. пара	0 - 6 / 4224	75	2,37	$0 \pm 0,237$
ТЦК (E31)	34368	±20	34368	HDB-3	коакс. пара	0 - 12/17184	75	1	$0 \pm 0, 1$
ЧЦК (Е4)	139264	±15	_	CMI	коакс. пара	0 - 12/70000	75	1*	_
Стык	2048кГц	±50	_	Синус	симм. пара	0-6/2048	120	0,75 - 1,5	_
синхронизации				меандр	коаксиаль-	0-6/2048	75	1,0 – 1,9	_
(112)	4			· 1	ная пара				

Примечания: * в размахе

Структуры циклов группообразования на 8448 кбит/с

а) при одностороннем согласовании скоростей

Длина цикла - 848 битов Количество битов на компонентный сигнал - 206 Длительность цикла - 100,3(78) мкс Максимальная скорость цифрового выравнивания на компонентный сигнал - 9,96 кбит/с Номинальный коэффициент цифрового выравнивания - 0,424

б) при двустороннем согласовании скоростей

С - биты управления цифровым выравниванием (команд согласования скоростей)

Сј.і означает і-ый бит управления цифровым выравниванием ј-ого компонентного сигнала

- ЦС биты цифровой служебной связи
- В вызов по цифровой служебной связи
- Н биты, зарезервированные для национального использования
- А обратный сигнал аварии

О - биты компонентных сигналов, предназначенные для положительного выравнивания

🛆 - служебные биты, предназначенные для отрицательного выравнивания компонентных сигналов

© АБВ 2000

Примечание: биты передаются по строкам слева направо и сверху вниз.

Структурная схема аппаратуры временного группообразования

Общая схема группообразования STM-N (по G.707)

Структура цикла STM-N

Мультиплексирование VC-4 в STM-1

Асинхронное преобразование компонентного сигнала 2048 кбит/с

Отображение сигнала 2048 кбит/с в VC-4

D информационный бит

О бит заголовка

- С бит управления цифровым выравниванием
- S бит возможности цифрового выравнивания
- R бит фиксированной вставки

Примечание: CiCiCi=000 означает, что Si=D CiCiCi=111 означает, что Si=R

Включение структур sSTM в общую схему группообразования (G.707/ Y.1322, G.708)

Структура VC-4-Хс (G.707/Y.1322)

Тип VC	Скорость передачи VC, кбит/с	Пропускная способность VC, кбит/с		
VC-11	1 664	1 600		
VC-12	2 240	2 176		
VC-2	6 848	6 784		
VC-3	48 960	48 384		
VC-4	150 336	149 760		
VC-4-4c	601 344	599 040		
VC-4-16c	2 405 376	2 396 160		
VC-4-64c	9 621 504	9 584 640		
VC-4-256c	38 486 016	38 338 560		

Типы VC и их пропускная способность

Формирование групп административных блоков более высоких порядков

Использование систем VCAT / LCAS

Механизм виртуальной сцепки предусматривает сцепку одинаковых контейнеров разного уровня.

Эта процедура осуществляется по краям "виртуального коридора".

VCAT (Virtual Concatenation) – виртуальная сцепка

LCAS (Link Capacity Adjustment Scheme) - Схема изменения размера канала

Резервирование блоков синхронного мультиплексора

РЕЗЕРВИРОВАНИЕ МУЛЬТИПЛЕКСНОЙ СЕКЦИИ МЅР

Отказ приводит к переключению как в направлении приема, так и передачи.

(а) Двунаправленное переключение

Отказ приводит к переключению линии только в направлении отказа.

(b) Однонаправленное переключение

РЕЗЕРВИРОВАНИЕ 2-ВОЛОКОННОГО КОЛЬЦА SNCP

Регионы по синхронизации на цифровой сети России

Объединение с системой DWDM

Мультиплексирование с широким спектральным разделением (Wide Wavelength Division Multiplexing) (WWDM)

Мультиплексирование со спектральным разделением при разнесении каналов большем или равном 50 нм. Устройство этого класса обычно формирует каналы в разных окнах прозрачности (например, 1 310 нм и 1 550 нм).

Мультиплексирование с грубым спектральным разделением (Coarse Wavelength Division Multiplexing) (CWDM)

Мультиплексирования со спектральным разделением при разнесении длин волн каналов меньше чем 50 нм, но больше чем 1000 ГГц (приблизительно 8 нм в районе 1550 нм и 5,7 нм в районе 1310 нм). Устройства в пределах этого класса могут охватывать несколько спектральных диапазонов.

Мультиплексирование с плотным спектральным разделением (Dense Wavelength Dvision Multiplexing) (DWDM)

Мультиплексирование со спектральным разделением при разнесении каналов меньшем или равном 1000 ГГц. Устройства в пределах этого класса могут охватывать один или более спектральных диапазонов.

Оптические транспортные сети (OTN) Структура DWDM сети

- Прозрачная передача протоколов: ОТN OTU1/2/3/4, SDH STM-1/4/16/64/256, Ethernet FE/GE/10GE/100GE и др.
- Одновременное усиление всех спектральных каналов
- Высокая емкость сети при одновременной передаче множества каналов
- Быстрый апгрейд за счет ввода новых каналов. Мультисервисность

Структура ОТМ

