

Смоленский колледж телекоммуникаций (филиал)

федерального государственного бюджетного образовательного учреждения

высшего образования

«Санкт-Петербургский государственный университет телекоммуникаций

им. проф. М.А. Бонч-Бруевича»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ

САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТАМИ

по МДК 01.02. Разработка мобильных приложений с поддержкой искусственного

интеллекта

специальность: 09.02.13 Интеграция решений с применением технологий

искусственного интеллекта

преподаватель: Котяткина Анастасия Николаевна

форма обучения – очная

Составлены в соответствии с рабочей программой дисциплины, утвержденной

«14» 05.2025 г.

Рассмотрены на заседании методической комиссии

гуманитарных и программно-вычислительных дисциплин

Протокол № 10 от «14» 05.2025 г.

Председатель МК __________ Т.Н. Строде

Методист ___________ О.Г. Ряска

г. Смоленск, 2025

УТВЕРЖДАЮ

Заместитель директора по УР

__________ И.А. Овчинникова

«____»_____________ 2025 г.

 2

Содержание

1 Пояснительная записка 3

2 Особенности организации внеаудиторной самостоятельной работы

студентов

3

3 Виды самостоятельной работы по МДК.01.02. Разработка мобильных

приложений с поддержкой искусственного интеллекта

4

 Приложения 19

 3

1. Пояснительная записка

 Самостоятельная работа – это планируемая работа студентов, выполняемая по заданию и

при методическом руководстве преподавателя, но без его непосредственного участия. Она

предназначена не только для овладения дисциплиной, но и для формирования навыков

самостоятельной работы вообще, в учебной, научной, профессиональной деятельности,

способности принимать на себя ответственность, самостоятельно решать проблемы, находить

конструктивные решения, выход из кризисной ситуации и т.д. Таким образом, значимость

самостоятельной работы студента выходит далеко за рамки отдельной дисциплины, играя

существенную роль в развитии самостоятельности как черты характера, личностного качества,

выраженного в способности мыслить, анализировать ситуации, вырабатывать собственное

мнение, действовать по собственной инициативе, независимо от навязываемых взглядов.

 Продумывая формы организации самостоятельной работы по дисциплине,

преподаватель должен исходить из нескольких позиций:

- необходимые знания, умения и навыки, которые должен показать студент в результате

выполнения всех заданий, выносимых на самостоятельное изучение (в соответствии с целью и

задачами изучаемой дисциплины);

- формирование профессиональных компетентностей, которые должны проявиться через ЗУНы

(знания, умения и навыки);

- формирование креативности студента в процессе изучения дисциплины и способности

нестандартно мыслить при выполнении заданий для самостоятельной работы;

- развитие активной исследовательской позиции студента;

- воспитание чувства ответственности за своевременное выполнение задания.

 Методические указания и рекомендации позволяют студенту выявить главное и

второстепенное в изучаемой дисциплине, увидеть связь теории и практики, развивают

способность к анализу полученных результатов, формируют способность формулировать

тактические подходы к выполнению поставленных задач, например, подготовке к сдаче

зачетов, экзаменов.

 Таким образом, самостоятельная работа студентов способствует развитию у них

творческой активности, повышению компетентности, совершенствованию мыслительных

навыков, а также воспитывает личность будущего профессионала.

 Студент, приступающий к изучению дисциплины «Разработка мобильных приложений с

поддержкой искусственного интеллекта», получает информацию обо всех видах

самостоятельной работы, об объеме и видах самостоятельной работы. Перед выполнением

студентами самостоятельной внеаудиторной работы преподаватель проводит инструктаж по

выполнению задания, который включает: цель задания, его содержание, сроки выполнения,

ориентировочный объем работы, основные требования к результатам работы, критерии оценки.

2. Особенности организации внеаудиторной самостоятельной работы студентов

При предъявлении видов заданий на внеаудиторную самостоятельную работу

рекомендуется использовать дифференцированный подход к студентам. Перед выполнением

студентами внеаудиторной самостоятельной работы преподаватель проводит инструктаж по

выполнению задания, который включает:

 цель задания,

 содержание,

 сроки выполнения,

 ориентировочный объем работы,

 основные требования к результатам работы,

 критерии оценки.

В процессе инструктажа преподаватель предупреждает студентов о возможных

типичных ошибках, встречающихся при выполнении задания. Инструктаж проводится

преподавателем за счет объема времени, отведенного на изучение дисциплины.

 4

Во время выполнения студентами внеаудиторной самостоятельной работы и при

необходимости преподаватель может проводить консультации за счет общего бюджета

времени, отведенного на консультации.

Самостоятельная работа может осуществляться индивидуально или группами студентов

в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня

сложности, уровня умений студентов.

Контроль результатов внеаудиторной самостоятельной работы студентов может

осуществляться в пределах времени, отведенного на обязательные учебные занятия по

дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, может

проходить в письменной, устной или смешанной форме, с представлением изделия или

продукта творческой деятельности студента.

В качестве форм и методов контроля внеаудиторной самостоятельной работы

студентов могут быть использованы: тестирование, защита практических и лабораторных

занятий, письменная проверка и др.

3. Виды самостоятельной работы по МДК.01.02. Разработка мобильных приложений с

поддержкой искусственного интеллекта

На самостоятельную работу по МДК.01.02. Разработка мобильных приложений с

поддержкой искусственного интеллекта РУП выделено 10 часов

4 семестр

Тема 1.1. Применение предобученных моделей ИИ для распознавания изображений на

мобильных устройствах

Цель ВСР: закрепить теоретические знания и получить практические навыки по интеграции

предобученных моделей машинного обучения (TensorFlow Lite) в мобильное приложение на

Android для решения задачи классификации изображений.

Трудоемкость
Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 2 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Создать мобильное приложение «Умный классификатор», которое с помощью

камеры смартфона распознает объекты из двух заранее заданных категорий (например,

"Собака" и "Кошка", "Кружка" и "Чашка", "Ручей" и "Озеро").

Этапы выполнения работы:

Этап 1. Подготовка набора данных и создание модели
1. Сбор данных: Создайте небольшой датасет для обучения. Для каждой из двух выбранных

категорий найдите и скачайте по 30-50 изображений. Разделите их на

папки train и val (например, dataset/train/dogs, dataset/train/cats и т.д.).

2. Создание модели (Python-скрипт): Используя библиотеку TensorFlow Lite Model Maker,

дообучите предобученную модель (например, efficientnet_lite0) на вашем датасете.

Пример кода (Python):

python

 5

import tensorflow as tf

from tflite_model_maker import image_classifier

from tflite_model_maker.image_classifier import DataLoader

Загрузка данных

data = DataLoader.from_folder('path/to/your/dataset')

train_data, test_data = data.split(0.9)

Создание и обучение модели

model = image_classifier.create(train_data, model_spec='efficientnet_lite0', epochs=10)

Оценка модели

loss, accuracy = model.evaluate(test_data)

Экспорт в TFLite

model.export(export_dir='.')

3. Получение модели: После выполнения скрипта в директории появится файл model.tflite. Это

и есть ваша предобученная модель, готовая к использованию на мобильном устройстве.

Этап 2. Создание проекта в Android Studio и интеграция модели (45 минут)
1. Создание проекта: Создайте новый проект в Android Studio с Empty Activity.

2. Добавление модели: Поместите файл model.tflite в папку app/src/main/ml (если папки ml нет,

создайте ее). Android Studio автоматически сгенерирует класс-обертку для удобной работы с

моделью.

3. Настройка зависимостей: Добавьте в файл build.gradle (Module: app) зависимости для

TensorFlow Lite:

gradle

dependencies {

 implementation 'org.tensorflow:tensorflow-lite:2.13.0'

 implementation 'org.tensorflow:tensorflow-lite-support:0.4.4'

 // ... другие зависимости

}

4. Проектирование интерфейса (layout): Разработайте простой пользовательский интерфейс

в activity_main.xml. Он должен содержать:

TextureView или SurfaceView для отображения preview с камеры.

Кнопку Button для захвата фотографии.

TextView для вывода результата классификации.

Этап 3. Реализация логики приложения
1. Работа с камерой: Реализуйте логику для получения разрешения на использование камеры,

инициализации камеры и вывода ее preview в TextureView.

2. Обработка изображения: По нажатию на кнопку:

Захватите кадр с TextureView или сделайте снимок с помощью CameraX/Camera2 API.

Преобразуйте полученное изображение в формат Bitmap.

Подготовьте Bitmap для модели: измените размер до требуемого (например, 224x224 пикселей),

нормализуйте значения пикселей.

3. Запуск инференса (вывода модели):
Загрузите вашу модель model.tflite с помощью сгенерированного класса Model (или

используя Interpreter напрямую).

 6

Передайте подготовленный Bitmap в модель.

Получите выходной тензор — массив вероятностей для каждого класса.

4. Отображение результата: Найдите класс с наибольшей вероятностью, сопоставьте его с

меткой (например, "Собака" или "Кот") и выведите название класса и уверенность модели

в TextView.

4. Требования к отчету

По результатам выполненной работы студент представляет:

1. Исходный код проекта (ссылку на GitHub-репозиторий или архив с проектом).

2. Краткий письменный отчет, содержащий:

Титульный лист.

Цель работы.

Описание выбранных классов для классификации.

Скриншоты работающего приложения: интерфейс, процесс распознавания, вывод результата.

Выводы: с какими трудностями столкнулись, какова, по вашей оценке, точность модели,

возможные пути улучшения приложения.

5. Критерии оценки

«Отлично»: Приложение успешно собрано и запущено. Реализован полный функционал:

работа камеры, захват изображения, корректная классификация и вывод результата. Код чистый

и хорошо структурирован. Отчет оформлен в полном объеме.

«Хорошо»: Приложение собрано и запущено. Основной функционал работает, но есть

незначительные ошибки в логике или интерфейсе. Отчет содержит не все требуемые элементы.

«Удовлетворительно»: Приложение собрано, но ключевой функционал (работа с камерой или

вывод модели) работает нестабильно или с грубыми ошибками. Отчет оформлен небрежно.

«Неудовлетворительно»: Приложение не запускается или ключевой функционал не

реализован. Отчет не представлен.

Информационное обеспечение:

1. Официальная документация Google ML Kit: Text Recognition | ML Kit for Firebase

2. Руководство для Android: Recognize text in images with ML Kit for Android

3. Руководство для iOS: Recognize text in images with ML Kit for iOS

4. Учебные материалы по Android Development (работа с камерой и разрешениями).

Тема 1.2. Автоматизация тестирования мобильных приложений с использованием Espresso и

Appium

Цель ВСР: освоить принципы автоматизации тестирования мобильных приложений. Получить

практические навыки написания UI-тестов с использованием фреймворков Espresso (для

Android) и Appium (кроссплатформенное тестирование).

Трудоемкость
Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 1 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Написать автоматизированные UI-тесты для простого мобильного приложения,

используя Espresso и познакомиться с основами Appium.

https://developers.google.com/ml-kit/vision/text-recognition
https://developers.google.com/ml-kit/vision/text-recognition/android
https://developers.google.com/ml-kit/vision/text-recognition/ios

 7

Этапы выполнения работы:

Этап 1. Подготовка тестового проекта

1. Создайте или используйте существующее простое приложение с одним экраном,

содержащим:

- EditText для ввода имени

- Button "Submit"

- TextView для отображения приветствия

2. Логика приложения: при нажатии на кнопку в TextView отображается "Hello, [имя]!"

3. Настройте зависимости Espresso в build.gradle (module :app):

gradle

dependencies {

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'

 androidTestImplementation 'androidx.test:runner:1.5.2'

 androidTestImplementation 'androidx.test:rules:1.5.2'

}

Этап 2. Написание тестов с Espresso

1. Создайте класс теста в androidTest директории:

kotlin

@RunWith(AndroidJUnit4::class)

class MainActivityTest {

 @get:Rule

 val activityRule = ActivityScenarioRule(MainActivity::class.java)

 @Test

 fun testGreetingDisplay() {

 // Вводим текст в EditText

 onView(withId(R.id.nameEditText))

 .perform(typeText("Иван"), closeSoftKeyboard())

 // Нажимаем на кнопку

 onView(withId(R.id.submitButton))

 .perform(click())

 // Проверяем результат

 onView(withId(R.id.greetingTextView))

 .check(matches(withText("Hello, Иван!")))

 }

}

2. Напишите дополнительные тесты:
- Тест пустого ввода

- Тест специальных символов

- Тест длинного текста

3. Запустите тесты через Android Studio и убедитесь в их работоспособности

Этап 3. Знакомство с Appium (20 минут)

1. Установите Appium Server (используйте готовый .app или .exe файл для упрощения)

2. Настройте capabilities для тестирования:
json

{

 "platformName": "Android",

 "platformVersion": "13.0",

 "deviceName": "emulator-5554",

 "app": "/path/to/your/app-debug.apk",

 8

 "automationName": "UiAutomator2"

}

3. Изучите Appium Inspector для просмотра иерархии элементов UI

Этап 4. Анализ и отчетность

Дайте ответы на контрольные вопросы:
1. В чем основные преимущества и недостатки Espresso по сравнению с Appium?

2. Какие типы мобильных приложений лучше тестировать с помощью каждого фреймворка?

3. Как автоматизация тестирования влияет на процесс разработки приложений с ИИ?

Критерии оценки:
«Отлично»: Все тесты проходят успешно, код хорошо структурирован, даны развернутые

ответы на вопросы

«Хорошо»: Тесты в основном работают, небольшие недочеты в реализации

«Удовлетворительно»: Реализована только базовая функциональность тестирования

«Неудовлетворительно»: Тесты не работают или проект не представлен

Информационное обеспечение:

1. Официальная документация Espresso: Android Developer Guide

2. Appium Documentation: Appium Official Docs

3. Android Testing Codelab: Android Testing Basics

Тема 1.5. Развертывание приложений в Play Market и App Store

Цель ВСР: изучить процесс подготовки и публикации мобильных приложений в официальные

магазины приложений. Освоить ключевые требования и процедуры для успешного

развертывания приложений с функциями ИИ.

Трудоемкость

Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 1 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Подготовить мобильное приложение к публикации и изучить полный процесс

развертывания в официальных магазинах приложений.

Этапы выполнения работы:

Этап 1. Подготовка приложения к публикации

1. Сборка релизной версии:
- Для Android: Настройка signingConfig для подписи APK/AAB

- Для iOS: Создание Archive в Xcode

2. Подготовка необходимых ресурсов:
- Иконка приложения (требования к размерам для обеих платформ)

- Скриншоты для разных размеров экранов (5-10 штук)

- Промо-видео (для App Store)

- Описание приложения на всех требуемых языках

3. Настройка метаданных:
- Название приложения (до 30 символов)

- Краткое и полное описание

https://developer.android.com/training/testing/espresso
http://appium.io/docs/en/about-appium/intro/
https://developer.android.com/codelabs/android-testing

 9

- Ключевые слова для поиска

- Категория приложения

- Контактная информация разработчика

Этап 2. Процесс публикации в Google Play Market (30 минут)

1. Создание аккаунта разработчика:
- Регистрация в Google Play Console

- Оплата регистрационного взноса ($25)

2. Создание карточки приложения:
- Заполнение всех обязательных полей

- Загрузка графических материалов

- Настройка рейтинга контента

3. Настройка распространения:
- Выбор стран распространения

- Настройка цены (бесплатно/платно)

- Выбор способа распространения (открытое/закрытое тестирование)

4. Особенности для приложений с ИИ:
- Описание использования данных в Политике конфиденциальности

- Объяснение функционала ИИ в описании приложения

- Гарантия соответствия правилам использования данных

Этап 3. Процесс публикации в Apple App Store (25 минут)

1. Требования к разработчику:
- Аккаунт Apple Developer Program ($99 в год)

- Настройка сертификаов и профилей в Apple Developer Center

2. Настройка в App Store Connect:
- Создание карточки приложения

- Заполнение метаданных

- Загрузка сборки через Xcode или Transporter

3. Особенности модерации:
- Требования к дизайну и юзабилити

- Политика использования данных

- Соответствие Guidelines по использованию ИИ

Этап 4. Анализ и отчетность

Дайте ответы на контрольные вопросы:

- Какие основные различия в процессе публикации между Play Market и App Store?

- Какие дополнительные требования предъявляются к приложениям с функциями ИИ?

- Какой этап публикации является наиболее критичным и почему?

Критерии оценки:
«Отлично»: Полностью подготовлен пакет для публикации, детально проработан план

развертывания, даны развернутые ответы на вопросы

«Хорошо»: Подготовлены основные материалы для публикации, но есть незначительные

недочеты

«Удовлетворительно»: Выполнена только часть требований, материалы подготовлены не

полностью

«Неудовлетворительно»: Работа не выполнена или выполнена некачественно

Информационное обеспечение:

1. Официальная документация: Google Play Console Help: Поддержка Google Play, Apple App

Store Review Guidelines: Руководство по модерации

2. Практические руководства: "Как опубликовать приложение в Google Play" - пошаговое

руководство, "Подготовка приложения к публикации в App Store" - гайдлайны Apple

https://support.google.com/googleplay/
https://developer.apple.com/app-store/review/guidelines/

 10

3. Дополнительные материалы: Требования к приложениям с ИИ от Google и Apple, Политика

конфиденциальности для мобильных приложений

5 семестр

Тема 1.1. Применение предобученных моделей ИИ для распознавания изображений на

мобильных устройствах

Цель ВСР: закрепить теоретические знания и получить практические навыки по интеграции

предобученных моделей машинного обучения (TensorFlow Lite) в мобильное приложение на

Android для решения задачи классификации изображений.

Трудоемкость
Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 2 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Создать мобильное приложение «Умный классификатор», которое с помощью

камеры смартфона распознает объекты из двух заранее заданных категорий (например,

"Собака" и "Кошка", "Кружка" и "Чашка", "Ручей" и "Озеро").

Этапы выполнения работы:

Этап 1. Подготовка набора данных и создание модели
1. Сбор данных: Создайте небольшой датасет для обучения. Для каждой из двух выбранных

категорий найдите и скачайте по 30-50 изображений. Разделите их на

папки train и val (например, dataset/train/dogs, dataset/train/cats и т.д.).

2. Создание модели (Python-скрипт): Используя библиотеку TensorFlow Lite Model Maker,

дообучите предобученную модель (например, efficientnet_lite0) на вашем датасете.

Пример кода (Python):

python

import tensorflow as tf

from tflite_model_maker import image_classifier

from tflite_model_maker.image_classifier import DataLoader

Загрузка данных

data = DataLoader.from_folder('path/to/your/dataset')

train_data, test_data = data.split(0.9)

Создание и обучение модели

model = image_classifier.create(train_data, model_spec='efficientnet_lite0', epochs=10)

Оценка модели

loss, accuracy = model.evaluate(test_data)

Экспорт в TFLite

 11

model.export(export_dir='.')

3. Получение модели: После выполнения скрипта в директории появится файл model.tflite. Это

и есть ваша предобученная модель, готовая к использованию на мобильном устройстве.

Этап 2. Создание проекта в Android Studio и интеграция модели (45 минут)
1. Создание проекта: Создайте новый проект в Android Studio с Empty Activity.

2. Добавление модели: Поместите файл model.tflite в папку app/src/main/ml (если папки ml нет,

создайте ее). Android Studio автоматически сгенерирует класс-обертку для удобной работы с

моделью.

3. Настройка зависимостей: Добавьте в файл build.gradle (Module: app) зависимости для

TensorFlow Lite:

gradle

dependencies {

 implementation 'org.tensorflow:tensorflow-lite:2.13.0'

 implementation 'org.tensorflow:tensorflow-lite-support:0.4.4'

 // ... другие зависимости

}

4. Проектирование интерфейса (layout): Разработайте простой пользовательский интерфейс

в activity_main.xml. Он должен содержать:

TextureView или SurfaceView для отображения preview с камеры.

Кнопку Button для захвата фотографии.

TextView для вывода результата классификации.

Этап 3. Реализация логики приложения
1. Работа с камерой: Реализуйте логику для получения разрешения на использование камеры,

инициализации камеры и вывода ее preview в TextureView.

2. Обработка изображения: По нажатию на кнопку:

Захватите кадр с TextureView или сделайте снимок с помощью CameraX/Camera2 API.

Преобразуйте полученное изображение в формат Bitmap.

Подготовьте Bitmap для модели: измените размер до требуемого (например, 224x224 пикселей),

нормализуйте значения пикселей.

3. Запуск инференса (вывода модели):
Загрузите вашу модель model.tflite с помощью сгенерированного класса Model (или

используя Interpreter напрямую).

Передайте подготовленный Bitmap в модель.

Получите выходной тензор — массив вероятностей для каждого класса.

4. Отображение результата: Найдите класс с наибольшей вероятностью, сопоставьте его с

меткой (например, "Собака" или "Кот") и выведите название класса и уверенность модели

в TextView.

4. Требования к отчету

По результатам выполненной работы студент представляет:

1. Исходный код проекта (ссылку на GitHub-репозиторий или архив с проектом).

2. Краткий письменный отчет, содержащий:

Титульный лист.

Цель работы.

Описание выбранных классов для классификации.

Скриншоты работающего приложения: интерфейс, процесс распознавания, вывод результата.

Выводы: с какими трудностями столкнулись, какова, по вашей оценке, точность модели,

возможные пути улучшения приложения.

5. Критерии оценки

 12

«Отлично»: Приложение успешно собрано и запущено. Реализован полный функционал:

работа камеры, захват изображения, корректная классификация и вывод результата. Код чистый

и хорошо структурирован. Отчет оформлен в полном объеме.

«Хорошо»: Приложение собрано и запущено. Основной функционал работает, но есть

незначительные ошибки в логике или интерфейсе. Отчет содержит не все требуемые элементы.

«Удовлетворительно»: Приложение собрано, но ключевой функционал (работа с камерой или

вывод модели) работает нестабильно или с грубыми ошибками. Отчет оформлен небрежно.

«Неудовлетворительно»: Приложение не запускается или ключевой функционал не

реализован. Отчет не представлен.

Информационное обеспечение:

1. Официальная документация Google ML Kit: Text Recognition | ML Kit for Firebase

2. Руководство для Android: Recognize text in images with ML Kit for Android

3. Руководство для iOS: Recognize text in images with ML Kit for iOS

4. Учебные материалы по Android Development (работа с камерой и разрешениями).

Тема 1.2. Применение предобученных моделей ИИ для распознавания речи на мобильных

устройствах

Цель ВСР: освоить принципы интеграции предобученных моделей для распознавания речи

(Speech-to-Text) в мобильное приложение. Получить практические навыки работы с

системными API распознавания речи и облачными сервисами.

Трудоемкость
Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 2 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Разработать мобильное приложение с одним экраном, которое по нажатию кнопки

записывает голос пользователя, распознает его и отображает распознанный текст на экране.

Этапы выполнения работы:

Этап 1. Подготовка и настройка проекта

1. Создайте новый проект в Android Studio (для iOS логика будет аналогичной с

использованием SFSpeechRecognizer).

2. Спроектируйте пользовательский интерфейс в файле activity_main.xml. Разместите

следующие элементы:

- TextView для отображения статуса ("Нажмите чтобы говорить") и результата распознавания.

- Button с иконкой микрофона для запуска и остановки записи.

- ProgressBar (опционально) для индикации процесса распознавания.

3. Настройте разрешения. Для Android добавьте в AndroidManifest.xml разрешение на запись

аудио:

xml

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Важно: Для API 23 (Android 6.0) и выше необходимо запрашивать это разрешение во время

выполнения (runtime). Код для этого будет в следующей части.

https://developers.google.com/ml-kit/vision/text-recognition
https://developers.google.com/ml-kit/vision/text-recognition/android
https://developers.google.com/ml-kit/vision/text-recognition/ios

 13

Этап 2. Реализация логики распознавания речи

1. Реализуйте запрос разрешений во время выполнения (Runtime Permissions).
- Проверяйте наличие разрешения RECORD_AUDIO при запуске активности.

- Если разрешение не предоставлено, запросите его у пользователя.

2. Настройте и запустите Intent для распознавания речи.
- По нажатию на кнопку создайте и настройте Intent с

действием RecognizerIntent.ACTION_RECOGNIZE_SPEECH.

- Установите дополнительные параметры (extras) для Intent:

- RecognizerIntent.EXTRA_LANGUAGE_MODEL – модель языка

(например, RecognizerIntent.LANGUAGE_MODEL_FREE_FORM).

- RecognizerIntent.EXTRA_LANGUAGE – язык распознавания (например, "ru-RU" для

русского).

- RecognizerIntent.EXTRA_PROMPT – подсказка для пользователя ("Говорите...").

- Запустите Intent с помощью startActivityForResult().

Пример кода на Kotlin для запуска Intent:

kotlin

private fun startSpeechRecognition() {

 if (!hasRecordPermission()) {

 requestRecordPermission()

 return

 }

 val intent = Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH).apply {

 putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_FREE_FORM)

 putExtra(RecognizerIntent.EXTRA_LANGUAGE, "ru-RU")

 putExtra(RecognizerIntent.EXTRA_PROMPT, "Говорите, я слушаю...")

 }

 startActivityForResult(intent, SPEECH_RECOGNITION_REQUEST_CODE)

}

3. Обработайте результат распознавания.
- Переопределите метод onActivityResult().

- Проверьте, что запрос код соответствует

вашему SPEECH_RECOGNITION_REQUEST_CODE и результат успешен (resultCode ==

RESULT_OK).

- Извлеките распознанный текст из данных результата. Текст возвращается в виде списка строк

(ArrayList<String>) в extras с ключом RecognizerIntent.EXTRA_RESULTS. Даже если фраза

одна, она находится в первом элементе списка.

- Отобразите полученный текст в TextView.

Пример обработки результата на Kotlin:

kotlin

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {

 super.onActivityResult(requestCode, resultCode, data)

 if (requestCode == SPEECH_RECOGNITION_REQUEST_CODE) {

 if (resultCode == RESULT_OK && data != null) {

 val results = data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS)

 val recognizedText = results?.get(0) ?: "Текст не распознан"

 textViewResult.text = recognizedText

 } else {

 14

 textViewResult.text = "Ошибка распознавания"

 }

 }

}

Этап 3. Анализ и отчетность

1. Протестируйте приложение. Произнесите несколько фраз разной сложности и длины.

Оцените точность распознавания.

2. Дайте ответы на контрольные вопросы письменно:
1. Каковы основные ограничения использования системного RecognizerIntent для распознавания

речи?

2. В каком случае для вашего приложения предпочтительнее было бы использовать облачный

API (например, Google ML Kit или Yandex SpeechKit)?

3. С какими проблемами безопасности и конфиденциальности данных сталкивается

разработчик при реализации функции распознавания речи?

Критерии оценки:

«Отлично»: Приложение стабильно работает, корректно запрашивает разрешения, запускает

системное Activity распознавания и отображает результат. Код чистый и хорошо

структурирован. Даны полные ответы на вопросы.

«Хорошо»: Приложение работает, но есть незначительные ошибки в логике (например, не

всегда обрабатываются все сценарии). Ответы на вопросы даны, но неполные.

«Удовлетворительно»: Приложение компилируется и запускается, но основная функция

(распознавание) работает нестабильно или с критическими ошибками.

«Неудовлетворительно»: Приложение не работает или проект не представлен.

Информационное обеспечение:

1. Официальная документация Android: RecognizerIntent - Android Developers

2. Руководство по распознаванию речи для iOS: SFSpeechRecognizer - Apple Developer

Documentation

3. Документация по Google ML Kit Speech Recognition: ML Kit for Firebase

4. Документация Yandex SpeechKit: Yandex Cloud SpeechKit

Тема 1.3. Автоматизация тестирования мобильных приложений с использованием Espresso и

Appium

Цель ВСР: освоить принципы автоматизации тестирования мобильных приложений. Получить

практические навыки написания UI-тестов с использованием фреймворков Espresso (для

Android) и Appium (кроссплатформенное тестирование).

Трудоемкость

Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 1 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Написать автоматизированные UI-тесты для простого мобильного приложения,

используя Espresso и познакомиться с основами Appium.

https://developer.android.com/reference/android/speech/RecognizerIntent
https://developer.apple.com/documentation/speech/sfspeechrecognizer
https://developer.apple.com/documentation/speech/sfspeechrecognizer
https://developers.google.com/ml-kit/speech-recognition
https://cloud.yandex.ru/services/speechkit

 15

Этапы выполнения работы:

Этап 1. Подготовка тестового проекта

1. Создайте или используйте существующее простое приложение с одним экраном,

содержащим:

- EditText для ввода имени

- Button "Submit"

- TextView для отображения приветствия

2. Логика приложения: при нажатии на кнопку в TextView отображается "Hello, [имя]!"

3. Настройте зависимости Espresso в build.gradle (module :app):

gradle

dependencies {

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'

 androidTestImplementation 'androidx.test:runner:1.5.2'

 androidTestImplementation 'androidx.test:rules:1.5.2'

}

Этап 2. Написание тестов с Espresso

1. Создайте класс теста в androidTest директории:

kotlin

@RunWith(AndroidJUnit4::class)

class MainActivityTest {

 @get:Rule

 val activityRule = ActivityScenarioRule(MainActivity::class.java)

 @Test

 fun testGreetingDisplay() {

 // Вводим текст в EditText

 onView(withId(R.id.nameEditText))

 .perform(typeText("Иван"), closeSoftKeyboard())

 // Нажимаем на кнопку

 onView(withId(R.id.submitButton))

 .perform(click())

 // Проверяем результат

 onView(withId(R.id.greetingTextView))

 .check(matches(withText("Hello, Иван!")))

 }

}

2. Напишите дополнительные тесты:
- Тест пустого ввода

- Тест специальных символов

- Тест длинного текста

3. Запустите тесты через Android Studio и убедитесь в их работоспособности

Этап 3. Знакомство с Appium (20 минут)

1. Установите Appium Server (используйте готовый .app или .exe файл для упрощения)

2. Настройте capabilities для тестирования:
json

{

 "platformName": "Android",

 "platformVersion": "13.0",

 "deviceName": "emulator-5554",

 16

 "app": "/path/to/your/app-debug.apk",

 "automationName": "UiAutomator2"

}

3. Изучите Appium Inspector для просмотра иерархии элементов UI

Этап 4. Анализ и отчетность

Ответьте на контрольные вопросы:
1. В чем основные преимущества и недостатки Espresso по сравнению с Appium?

2. Какие типы мобильных приложений лучше тестировать с помощью каждого фреймворка?

3. Как автоматизация тестирования влияет на процесс разработки приложений с ИИ?

Критерии оценки:
«Отлично»: Все тесты проходят успешно, код хорошо структурирован, даны развернутые

ответы на вопросы

«Хорошо»: Тесты в основном работают, небольшие недочеты в реализации

«Удовлетворительно»: Реализована только базовая функциональность тестирования

«Неудовлетворительно»: Тесты не работают или проект не представлен

Информационное обеспечение:

1. Официальная документация Espresso: Android Developer Guide

2. Appium Documentation: Appium Official Docs

3. Android Testing Codelab: Android Testing Basics

Тема 1.4. Развертывание приложений в Play Market и App Store

Цель ВСР: изучить процесс подготовки и публикации мобильных приложений в официальные

магазины приложений. Освоить ключевые требования и процедуры для успешного

развертывания приложений с функциями ИИ.

Трудоемкость

Количество

заданий

(задач,

упражнений)

Характер задачи

(обязательный/

рекомендательный)

Норма

времени (в

часах по

рабочей

программе)

Срок

выполнения

(в неделях)

Форма

представления

материала

Форма

контроля

каждого

задания

Задание 1 Обязательный 1 1 неделя Исходный код

проекта

(ссылка на

GitHub-

репозиторий

или архив с

проектом)

Устный опрос,

демонстрация

проекта

Задание 1. Подготовить мобильное приложение к публикации и изучить полный процесс

развертывания в официальных магазинах приложений.

Этапы выполнения работы:

Этап 1. Подготовка приложения к публикации

1. Сборка релизной версии:
- Для Android: Настройка signingConfig для подписи APK/AAB

- Для iOS: Создание Archive в Xcode

2. Подготовка необходимых ресурсов:
- Иконка приложения (требования к размерам для обеих платформ)

- Скриншоты для разных размеров экранов (5-10 штук)

- Промо-видео (для App Store)

- Описание приложения на всех требуемых языках

3. Настройка метаданных:
- Название приложения (до 30 символов)

https://developer.android.com/training/testing/espresso
http://appium.io/docs/en/about-appium/intro/
https://developer.android.com/codelabs/android-testing

 17

- Краткое и полное описание

- Ключевые слова для поиска

- Категория приложения

- Контактная информация разработчика

Этап 2. Процесс публикации в Google Play Market (30 минут)

1. Создание аккаунта разработчика:
- Регистрация в Google Play Console

- Оплата регистрационного взноса ($25)

2. Создание карточки приложения:
- Заполнение всех обязательных полей

- Загрузка графических материалов

- Настройка рейтинга контента

3. Настройка распространения:
- Выбор стран распространения

- Настройка цены (бесплатно/платно)

- Выбор способа распространения (открытое/закрытое тестирование)

4. Особенности для приложений с ИИ:
- Описание использования данных в Политике конфиденциальности

- Объяснение функционала ИИ в описании приложения

- Гарантия соответствия правилам использования данных

Этап 3. Процесс публикации в Apple App Store (25 минут)

1. Требования к разработчику:
- Аккаунт Apple Developer Program ($99 в год)

- Настройка сертификаов и профилей в Apple Developer Center

2. Настройка в App Store Connect:
- Создание карточки приложения

- Заполнение метаданных

- Загрузка сборки через Xcode или Transporter

3. Особенности модерации:
- Требования к дизайну и юзабилити

- Политика использования данных

- Соответствие Guidelines по использованию ИИ

Этап 4. Анализ и отчетность

Дайте ответы на контрольные вопросы:

- Какие основные различия в процессе публикации между Play Market и App Store?

- Какие дополнительные требования предъявляются к приложениям с функциями ИИ?

- Какой этап публикации является наиболее критичным и почему?

Критерии оценки:
«Отлично»: Полностью подготовлен пакет для публикации, детально проработан план

развертывания, даны развернутые ответы на вопросы

«Хорошо»: Подготовлены основные материалы для публикации, но есть незначительные

недочеты

«Удовлетворительно»: Выполнена только часть требований, материалы подготовлены не

полностью

«Неудовлетворительно»: Работа не выполнена или выполнена некачественно

Информационное обеспечение:

1. Официальная документация: Google Play Console Help: Поддержка Google Play, Apple App

Store Review Guidelines: Руководство по модерации

https://support.google.com/googleplay/
https://developer.apple.com/app-store/review/guidelines/

 18

2. Практические руководства: "Как опубликовать приложение в Google Play" - пошаговое

руководство, "Подготовка приложения к публикации в App Store" - гайдлайны Apple

3. Дополнительные материалы: Требования к приложениям с ИИ от Google и Apple, Политика

конфиденциальности для мобильных приложений

 19

Приложения

Требования к оформлению презентаций:

В оформлении презентаций выделяют два блока: оформление слайдов и представление

информации на них. Для создания качественной презентации необходимо соблюдать ряд

требований, предъявляемых к оформлению данных блоков.

Оформление слайдов:
Стиль · Соблюдайте единый стиль оформления

· Избегайте стилей, которые будут отвлекать от самой презентации.

· Вспомогательная информация (управляющие кнопки) не должны преобладать над

основной информацией (текстом, иллюстрациями).

Фон Для фона предпочтительны холодные тона

Использование цвета

· На одном слайде рекомендуется использовать не более трех цветов: один для фона,

один для заголовка, один для текста.

· Для фона и текста используйте контрастные цвета.

· Обратите внимание на цвет гиперссылок (до и после использования).

Анимационные эффекты

· Используйте возможности компьютерной анимации для представления информации

на слайде.

· Не стоит злоупотреблять различными анимационными эффектами, они не должны

отвлекать внимание от содержания информации на слайде.

Представление информации:
Содержание

информации

· Используйте короткие слова и предложения.

· Минимизируйте количество предлогов, наречий, прилагательных.

· Заголовки должны привлекать внимание аудитории.

Расположение

информации

на странице

· Предпочтительно горизонтальное расположение информации.

· Наиболее важная информация должна располагаться в центре экрана.

· Если на слайде располагается картинка(фото), надпись должна располагаться под ней.

Шрифты

· Для заголовков – не менее 24.

· Для информации не менее 18.

· Шрифты без засечек легче читать с большого расстояния.

· Нельзя смешивать разные типы шрифтов в одной презентации.

· Для выделения информации следует использовать жирный шрифт, курсив или

подчеркивание.

· Нельзя злоупотреблять прописными буквами (они читаются хуже строчных).

Способы выделения

информации

· Следует использовать:

рамки; границы, заливку; штриховку, стрелки; рисунки, диаграммы, фото.

Объем информации · Не стоит заполнять один слайд слишком большим объемом информации: люди могут

единовременно запомнить не более трех фактов, выводов, определений.

· Наибольшая эффективность достигается тогда, когда ключевые пункты отображаются

по одному на каждом отдельном слайде.

Виды слайдов

Для обеспечения разнообразия следует использовать разные виды слайдов: с текстом;

с таблицами; с диаграммами, иллюстрациями, фото и т.д.

 Основные критерии оценки презентации:

1. Структура. Структура презентации соответствует общепринятой структуре (Наличие

заголовка, фамилии авторов).

2. Содержание.

3. Оформление. Вставка иллюстраций, фото (по необходимости), использование эффектов

анимации, звукового сопровождения. Отсутствие орфографических и пунктуационных ошибок.

Текст легко читается. Презентация не перегружена анимацией и картинками.

4. Коллективная работа. Слаженная работа в группе.

5. Понятность. Презентация не содержит логических ошибок и понятна практически без

комментариев.

Требования к исходному коду проекта

1. Общие требования

 20

 Полный проект должен включать все исходные файлы, необходимые для сборки

 Система контроля версий: предпочтительна ссылка на GitHub-репозиторий

 Структура проекта должна соответствовать стандартам выбранной платформы

(Android/iOS)

2. Требования к GitHub-репозиторию

text

Название репозитория: MDK-01-02-Mobile-AI-Project

Структура:

├── app/

│ ├── src/

│ │ ├── main/

│ │ │ ├── java/kotlin/ (исходный код)

│ │ │ ├── res/ (ресурсы)

│ │ │ └── AndroidManifest.xml

│ │ └── test/ (unit-тесты)

├── build.gradle (конфигурация сборки)

├── README.md (документация)

└── .gitignore

3. Содержание README.md

markdown

Название проекта

Описание

Краткое описание функционала приложения с поддержкой ИИ

Функциональность

- Распознавание текста/речи/изображений

- Используемые AI-модели и технологии

- Системные требования

Сборка и запуск

1. Требования: Android Studio X.X, JDK X.X

2. Инструкция по сборке

3. Настройка API-ключей (если требуются)

Используемые технологии

- Язык программирования: Kotlin/Java/Swift

- AI-библиотеки: ML Kit, TensorFlow Lite, Core ML

- Минимальная SDK: Android XX / iOS XX

4. Требования к коду

 Комментарии: код должен содержать поясняющие комментарии к основным функциям и

алгоритмам

 Стиль кодирования: соблюдение conventions выбранного языка

 Архитектура: четкое разделение на слои (UI, бизнес-логика, данные)

 Безопасность: отсутствие закоммиченных секретов и API-ключей

5. Обязательные файлы

 build.gradle с подключенными зависимостями AI-библиотек

 AndroidManifest.xml с прописанными permissions (камера, микрофон, интернет)

 Модели ИИ в папке assets/ (если используются локальные модели)

6. Пример корректной структуры

kotlin

// MainActivity.kt - пример хорошо документированного кода

class MainActivity : AppCompatActivity() {

https://readme.md/

 21

 /**

 * Инициализация AI-модели для распознавания текста

 * Используется Google ML Kit Text Recognition

 */

 private fun initializeTextRecognizer() {

 val recognizer = TextRecognition.getClient()

 // ... код инициализации

 }

 /**

 * Обработка результата распознавания

 * @param image - входное изображение для анализа

 */

 private fun processImageWithAI(image: InputImage) {

 // ... AI-логика

 }

}

7. Критерии оценки кода

 Функциональность: приложение выполняет заявленные задачи с ИИ

 Качество кода: читаемость, структура, комментарии

 Архитектура: соблюдение принципов SOLID, MVVM/MVI

 Обработка ошибок: корректная работа при отсутствии сети/камеры

 Производительность: оптимизация работы AI-моделей

8. Форматы сдачи

 Предпочтительно: ссылка на публичный GitHub-репозиторий

 Альтернатива: архив проекта в формате .zip с полной структурой

 Запрещено: присылать только файлы .apk/.ipa без исходного кода

Примечание: Проект должен успешно компилироваться и запускаться в стандартной среде

разработки!

		2025-10-07T16:00:46+0300
	Овчинникова Ирина Александровна

