

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

  Моисеенко Г. Ю., 2025
DOI: 10.31854/2307-1303-2025-13-4-1-14

1

URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

УДК 004.056.5

https://doi.org/10.31854/2307-1303-2025-13-4-1-14

EDN: SFRRWR

Моделирование интерфейса информационной системы и инструкций

по работе с ней с учетом девиации поведения пользователя

Моисеенко Г. Ю.1

Министерство обороны Российской Федерации,

Москва, 119160, Российская Федерация

Постановка задачи. Непреднамеренное нарушение пользователем инструкций по работе с ин-

формационной системой, приводящее к информационным угрозам (неумышленный инсайдинг), явля-

ется серьезной проблемой в сфере информационной безопасности. Основная причина нарушений за-

ключается в том, что вследствие определенного психоэмоционального состояния пользователя воз-

никает девиация его поведения и он может ошибаться как в выборе, так и в работе с элементами

интерфейса системы: например, вводить конфиденциальные данные в «открытые» поля. Цель ра-

боты состоит в описании программного средства моделирования, разработанного на базе авторской

модели интерфейса системы и инструкций. Методы исследования: компьютерное моделирование,

программная инженерия, эксперимент. Результат: помимо самого факта создания программного

средства доказана его работоспособность в части моделирования интерфейса в информационной

системе и инструкций по работе с ней, а также продемонстрирована наглядность получаемого гра-

фического отображения. Практическая значимость заключается в том, что данное средство поз-

воляет реализовать метод противодействия девиации поведения пользователя путем решения опти-

мизационной задачи по уточнению инструкций в части спецификации описания элементов интер-

фейса; при этом данная задача является многокритериальной, поскольку увеличение содержания ин-

струкции ведет к обратному эффекту – усложнению ее восприятия человеком.

Ключевые слова: неумышленный инсайдинг, девиация поведения, моделирование, про-

граммное средство, эксперимент

Введение

Одной из причин нарушения информационной безопасности организаций

ИТ-сектора является наличие внутренних нарушителей ‒ так называемых инсай-

деров, уже находящихся внутри периметра безопасности при выполнении своих

должностных обязанностей. Несмотря на то, что данная проблема известна до-

статочно давно, тем не менее более глубокого изучения требует ее отдельное

направление ‒ неумышленный инсайдинг, одна из основных причин которого за-

ключается в непреднамеренном совершении сотрудником действий, ведущих

1Библиографическая ссылка на статью:

Моисеенко Г. Ю. Моделирование интерфейса информационной системы и инструкций по работе с ней

с учетом девиации поведения пользователя // Информационные технологии и телекоммуникации. 2025.

Т. 13. № 4. С. 1‒14. DOI: 10.31854/2307-1303-2025-13-4-1-14. EDN: SFRRWR

Reference for citation:

Moiseenko G. Modeling the Interface of an Information System and Instructions for Working with It, Taking into

Account the Deviation of User Behavior // Telecom IT. 2025. Vol. 13. Iss. 4. PP. 1‒14. (in Russian).

DOI: 10.31854/2307-1303-2025-13-4-1-14. EDN: SFRRWR

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

2

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

к информационным угрозам [1]. Поскольку значительное количество действий

в организации производится с информационной системой, неумышленный ин-

сайдинг опасен при работе именно с ней.

Одной из первопричин неумышленного инсайдера является девиативное

поведение сотрудников системы из-за их человеческих особенностей и состоя-

ния, например, утомленности или стресса [2], что в результате увеличивает ве-

роятность ошибки при вводе данных в элементы интерфейса, близкие к описа-

нию того, которое требует инструкция. Так, например, в состоянии спешки поль-

зователь может перепутать поля для ввода логина и пароля, а при получении

ошибки последний попадет в открытый лог или даже выведется на экран (явля-

ясь с точки зрения системы логином).

Одним из путей противодействия инсайдерам такого рода является коррек-

тировка самих инструкций по работе с информационной системой (в сторону уси-

ления их однозначности), снижающая тем самым непреднамеренное отклонение

от них. Для получения полноценного метода противодействия требуется создание

механизма моделирования интерфейса информационной системы и инструкций

по работе с ней, который при этом позволял бы учитывать и девиацию поведения

пользователя [3]. В результате задача противодействия путем корректировки ин-

струкций может быть сведена к оптимизационной, позволяющей находить рацио-

нальный баланс между точностью спецификации инструкции (вернее, элементов

интерфейса) и сложностью ее восприятия человеком (чрезмерное разрастание со-

держания инструкции приведет к обратному эффекту ‒ росту количества и даже

«качества» ошибок) [4]. Описание созданной программной реализации такого

средства моделирования (в формате спецификации программного интерфейса для

использования), а также базовый пример его работы приводятся ниже.

Модель интерфейса

Взаимодействие пользователя с интерфейсом происходит согласно соот-

ветствующей инструкции по работе с информационной системой. При этом все

многообразие таких систем ограничено наиболее востребованными в целом ряде

сфер, а именно ‒ продуцирующими, согласно которым от пользователя требу-

ется ввод определенного набора параметров через графические формы, в резуль-

тате чего информационная система предоставляет некоторый информационный

продукт [5]. При этом логика «прохождения» интерфейса может отличаться от

линейной, что обеспечивается проверкой условий, влияющих на последователь-

ность появления графических форм.

Авторская модель интерфейса информационной системы и инструкций по

работе с ней (публикация планируется к выходу в 2025 г.) имеет аналитический

вид и основана на следующих базовых положениях.

Положение 1. Инструкция по работе с информационной системой состоит

из последовательности шагов, определяющих некоторый элемент интерфейса и

необходимые действия над ним [6]. При этом, поскольку топология большинства

интерфейсов представляет собой дерево (или граф) логики появления его форм,

то и линейных инструкций может быть несколько. Выбор же каждой следующей

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

3

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

формы интерфейса (в случае их вариативности) определяется совпадением од-

ного из введенных пользователем значений в форму с заданным условием;

например, при заказе билета установка флаговой кнопки провоза багажа допол-

нительно приведет к появлению соответствующей формы.

Положение 2. Безошибочная работа пользователя по инструкции предпо-

лагает точный поиск нужного элемента интерфейса и выполнение над ним за-

данного действия.

Положение 3. Информационный продукт создается системой на основе

данных, введенных пользователем через элементы интерфейса.

Положение 4. Девиация (т. е. отклонение) поведения пользователя может

привести к выбору неверных элементов интерфейса и, следовательно, к неточ-

ному выполнению инструкции.

Положение 5. Следствием девиации может быть неверный ввод данных

(нарушение целостности), часть из которых ошибочно попадет в открытый доступ

(нарушение конфиденциальности); также инструкция может быть не завершена

из-за выполнения иной логики работы с интерфейсом (нарушение доступности).

Положение 6. Вероятность каждого из нарушений информационной без-

опасности [7] может быть оценена исходя из конкретного интерфейса, инструк-

ции и уровня девиации поведения определенного пользователя (как постоянного,

так и меняющегося в процессе работы ‒ например, в зависимости от сложности

описания конкретного шага инструкции).

Положение 7. Пользователь выбирает элемент интерфейса, ориентируясь

на его визуальные и функциональные свойства или признаки (близость таких ха-

рактеристик, как текст [8], форма [9], цвет [10] и пр.), а девиация расширяет мно-

жество выбора схожих элементов.

Положение 8. Алгоритм поиска элементов для пользователя с девиатив-

ным поведением находит все элементы интерфейса, чья близость к эталону (схо-

жесть) по разным признакам не превышает заданных порогов.

Положение 9. Противодействие девиации возможно путем добавления

в описание шагов инструкции уточняющих деталей о признаках элемента, что

сужает возможность (снижает вероятность) совершения ошибки пользователем.

Положение 10. Чрезмерное добавление уточнений в инструкцию усложняет

ее восприятие, что само по себе может негативно сказаться на работе пользователя.

Положение 11. Исходя из двух предыдущих положений, задача противо-

действия девиации сводится к оптимизационной ‒ требуется найти такой набор

уточнений в инструкции, который минимизирует как вероятность ошибок (и как

следствие, нарушений), так и уровень сложности инструкции ‒ т. е. имеется мно-

гокритериальное условие.

Положение 12. Решение оптимизационной задачи возможно различными

способами, однако из-за «комбинаторного взрыва» наиболее подходящими мо-

гут оказаться эвристические.

Положение 13. Иным способом противодействия девиативному поведе-

нию является не корректировка инструкций, а модернизация собственно интер-

фейса для устранения «слабых мест», провоцирующих ошибки пользователя (ко-

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

4

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

торые, в том числе, приводят к реализации комбинированных атак [11]). Впро-

чем, способ, как правило, применим только перед или в процессе проектирова-

ния информационной системы, поскольку готовый интерфейс установленной си-

стемы вряд ли подлежит модификации.

Программная реализация

Реализация средства моделирования (интерфейса и инструкций), позволя-

ющая учитывать девиацию поведения пользователя, разработана на языке про-

граммирования Python и представляет собой набор классов с собственным функ-

циональным назначением. Создание экземпляров классов, настройка и построе-

ние связей между ними позволяет в программной памяти создать граф логики

переходов между формами интерфейса. Ниже приводится описание всех клас-

сов, а также их полей и методов, в формате спецификации программного интер-

фейса (т. е. без детализации внутренней реализации), что позволяет использовать

данное средство моделирования в качестве внешнего модуля при создании соот-

ветствующих алгоритмов, способов и архитектур систем противодействия не-

умышленному инсайдингу.

Класс “ElemType(Enum)” служит для перечислений (что здесь и далее ука-

зывается ключевым словом “Enum” в скобках) и предназначен для хранения воз-

можных типов элемента интерфейса, которые могут быть следующими:

“Undefined” ‒ неопределено, “TextBox” ‒ текстовое поле, “ComboBox” ‒ выпада-

ющий список, “Spinner” ‒ «спиннер», “Button” ‒ обычная кнопка, “Radio” ‒ ра-

диокнопка, “CheckBox” ‒ флаговая кнопка.

Класс “Element” предназначен для хранения информации о графическом

элементе формы интерфейса; его поля и методы приводятся далее.

Статическое поле “Id_Counter” содержит глобальный счетчик экземпля-

ров класса Element и предназначен для инкрементированного назначения уни-

кальных идентификаторов элементам; поле позволяет хранить значение центра-

лизованно и в единственном варианте (в классе).

Поле “Id” содержит текущий уникальный идентификатор элемента интерфейса.

Поле “Name” содержит имя элемента интерфейса, которое может быть

проинтерпретировано как его заголовок.

Поле “Type” содержит тип элемента интерфейса и принимает одно из зна-

чений перечисления в классе ElemType(Enum).

Поле “IsConfident” содержит бинарный признак того, что информация

в нем является конфиденциальной.

Поле “Properties” содержит кортеж значений свойств (признаков) эле-

мента. Так, например, в нем могут располагаться текстовая метка, форма и цвет

элемента.

Метод “__init__(self, name, type, is_confident, peoperties = None)” является

конструктором класса и инициализирует следующие его поля: имя (Name), тип

(Type), признак конфиденциальности (is_confident) и список свойств элемента

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

5

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

(properties). Указание свойств является опциональным, что здесь и далее указы-

вается с помощью конструкции языка программирования “= None”. Также, если

свойства не указаны, то для них меткой-признаком элемента считается его имя.

Метод “__str__(self)” предназначен для генерации отладочной информа-

ции о свойствах элемента формы, примером которой является следующая строка:

Element_1: 'Login' { type = TextBox, confident = 0 }, properties = ['Login']

Класс “Form” предназначен для хранения информации о графической

форме интерфейса; его поля и методы приводятся далее.

Статическое поле “Id_Counter” содержит глобальный счетчик экземпля-

ров класса Form и предназначен для инкрементированного назначения уникаль-

ных идентификаторов формам.

Поле “Id” содержит текущий уникальный идентификатор формы интерфейса.

Поле “Name” содержит имя формы интерфейса, которое может быть про-

интерпретировано как ее заголовок.

Поле “Elements” содержит список всех элементов класса Element, распо-

ложенных на форме.

Метод “__init__(self, name)”. Метод является конструктором класса и ини-

циализирует его поле имени (Name).

Метод “AddElement(self, element)” добавляет новый элемент (element)

в список элементов формы (Elements).

Метод “__str__(self)” предназначен для генерации отладочной информа-

ции о свойствах формы, примером которой является следующая строка:

Form_1: 'Enter' { elements = ['Element_1', 'Element_2', 'Element_3'] }

Класс “Condition” предназначен для хранения информации об условии

перехода между формами интерфейса согласно логике работы с ним; его поля и

методы приводятся далее.

Статическое поле “Id_Counter” содержит глобальный счетчик экземпля-

ров класса Condition и предназначено для инкрементированного назначения уни-

кальных идентификаторов условиям переходов между формами.

Поле “Id” содержит текущий уникальный идентификатор элемента интерфейса.

Поле “Element” содержит элемент формы, данные в котором проверяются

(согласно условию) при определении следующей формы для перехода.

Поле “Value” содержит значение, которое сопоставляется с данными в эле-

менте при определении следующей формы для перехода.

Метод “__init__(self, element, value)” является конструктором класса и

инициализирует следующие его поля: элемент (Element), значение (Value).

Метод “__str__(self)” предназначен для генерации отладочной информа-

ции о свойствах условия перехода между формами, примером которой является

следующая строка:
Condition_3: Element_6 == True

Класс “Link” предназначен для хранения информации о переходах между

формами интерфейса согласно логике работы с ним ‒ т. е. представляет собой

однонаправленную связь «Откуда → Куда»; его поля и методы приводятся далее.

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

6

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

Статическое поле “Id_Counter” содержит глобальный счетчик экземпля-

ров класса и предназначено для инкрементированного назначения уникальных

идентификаторов связей между формами.

Поле “Id” содержит текущий уникальный идентификатор перехода между

формами интерфейса.

Поле “FormFrom” содержит ссылку на предыдущую форму интерфейса

в переходе между их парой, т. е. элемент связи «Откуда».

Поле “FormTo” содержит ссылку на следующую форму интерфейса в пе-

реходе между их парой, т. е. элемент связи «Куда».

Поле “Condition” содержит ссылку на условие (опционально), согласно ко-

торому выбирается данный переход между формами.

Метод “__init__(self, form_from, form_to, condition = None)” является кон-

структором класса и инициализирует следующие поля класса: ссылка на преды-

дущую (form_from) и следующую (form_to) формы, условие для перехода

(condition); указание условия является опциональным.

Метод “__str__(self)” предназначен для генерации отладочной информа-

ции о свойствах переходов между формами, примером которой является следу-

ющая строка:
Link_1: Form_1 -> Form_2

Класс «Interface» предназначен для хранения информации обо всем

интерфейсе, содержащем формы, их элементы, связи и условия; его поля и

методы приводятся далее.

Поле “RootForm” содержит ссылку на главную (стартовую) форму интер-

фейса.

Поле “Forms” содержит список всех форм класса Form, присутствующих

в интерфейсе.

Поле “Links” содержит список всех переходов между формами класса,

присутствующих в интерфейсе.

Метод “__init__(self)” является конструктором класса и производит ряд

служебных действий.

Метод “SetRootForm(self, form)” устанавливает главную форму интер-

фейса (form присваивается к RootForm).

Метод “AddForm(self, form)” добавляет новую форму (form) в список

форм интерфейса (Forms).

Метод “LinkForms(self, form_from, form_to, condition = None) ” создает пе-

реход между формами («form_from → form_to» с опциональным условием

condition) и добавляет его в список переходов интерфейса (Links); указание усло-

вия является опциональным.

Метод “BuildDescription(self)” создает полное текстовое описание всех

объектов интерфейса (с их свойствами): форм, элементов, переходов. Описание

строится путем вызова метода “__str__” для объектов соответствующих классов.

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

7

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

Метод “BuildDot(self)” создает описание модели интерфейса в виде графа

формата DOT, подходящего для визуализации; примером описания является сле-

дующий (приведены основные конструкции описания, остальные сокращены

с помощью «...»):

digraph {
 subgraph cluster_1 {
 label="#1: Enter" shape=box _Form_Anchor_1 [label="" shape=point]
 Element_1 [label="#1: Login [TextBox]" color=black penwidth=1 shape=box]
 ...
 }
 subgraph cluster_2 {
 ...
 }
 _Form_Anchor_1 -> _Form_Anchor_2 [lhead=cluster_2 ltail=cluster_1 name=""
style=solid]
 ...
}

Затем по данному описанию генерируется графическое изображение модели ин-

терфейса (с применением классического средства GraphViz).

Класс “ActionType(Enum)” служит для перечисления и хранения возможных

типов действий над элементом интерфейса, которые могут быть следующими:

Undefined ‒ не определено, Enter ‒ ввод данных, Select ‒ выбор данных, Click ‒

нажатие на кнопку.

Класс “Step” предназначен для хранения информации о каждом шаге

инструкции по работе с информационной системой; его поля и методы

приводятся далее.

Статическое поле “Id_Counter” содержит глобальный счетчик экземпля-

ров класса Step и предназначено для инкрементированного назначения уникаль-

ных идентификаторов шагов инструкций.

Поле “Id” содержит текущий уникальный идентификатор шага интерфейса.

Поле “Element” содержит ссылку на элемент формы, над которым произ-

водятся действия согласно шагу интерфейса.

Поле “Action” содержит тип действия над элементом интерфейса и при-

нимает одно из значений перечисления в классе ActionType.

Поле “Value” содержит значение (опционально), которое необходимо вве-

сти в элемент интерфейса согласно действиям шага.

Метод “__init__(self, element, action, value = None)” является конструкто-

ром класса и инициализирует следующие его поля: элемент (Element), действие

(Action), значение (Value); указание значения является опциональным.

Метод “__str__(self)” предназначен для генерации отладочной информа-

ции о свойствах шага инструкции, примером которой является следующая

строка:
Step_1: Element_1 <- Enter

Класс “Instruction” предназначен для хранения информации об инструкции

по работе с информационной системой; его поля и методы приводятся далее.

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

8

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

Статическое поле “Id_Counter” содержит глобальный счетчик экземпля-

ров класса Instruction и предназначено для инкрементированного назначения

уникальных идентификаторов инструкций.

Поле “Id” содержит текущий уникальный идентификатор элемента ин-

струкции.

Поле “Name” содержит имя инструкции, которое может быть проинтер-

претировано как ее название или назначение.

Поле “Steps” содержит список всех шагов класса Step, присутствующих

в инструкции.

Метод “__init__(self, name)” является конструктором класса и инициали-

зирует его поле имени (Name).

Метод “AddStep(self, step)” добавляет новый шаг (step) в список шагов ин-

струкции (Steps).

Метод “__str__(self)” предназначен для генерации отладочной информа-

ции о свойствах инструкции, примером которой является следующая строка:

Instruction_1: 'Buy ticket without baggage' { steps = ['Step_1: Element_1 <-

Enter', 'Step_2: Element_2 <- Enter', 'Step_3: Element_3 <- Click' …] }

Метод “BuildDescription(self)” создает полное текстовое описание шагов

инструкции (с их свойствами), которое строится путем вызова метода “__str__”

для объектов соответствующих классов.

Девиации поведения пользователя в рамках созданного средства модели-

рования учитываются с помощью свойств элементов (поле “Properties” класса

“Element”), поскольку позволяет оценить близость описания элемента в инструк-

ции и его визуальное (или иное) представление на форме.

Пример моделирования интерфейса

Приведем пример моделирования интерфейса информационной системы и

инструкций по работе с ней. Предположим, что информационная система пред-

назначена для заказа пассажиром билета до места назначения через личный ка-

бинет; при этом опционально он может приобрести место для багажа. Таким об-

разом, в интерфейсе системы присутствуют четыре следующие формы:

1) вход в личный кабинет (название “Enter”);

2) ввод данных о поездке, включая необходимость провоза багажа (назва-

ние “Ticket”);

3) ввод данных о багаже (название “Baggage”);

4) оплата поездки (название “Payment”).

Интерфейс начинается с первой формы, содержащей два текстовых поля

(тип “TextBox”) с именем пользователя (заголовок “Login”) и его паролем (заго-

ловок “Password”).

На второй форме присутствуют два текстовых поля с пунктом назначения

(заголовок “Location”) и датой / временем отправления (заголовок “Data and

time”), а также флаговая кнопка (тип “CheckBox”) для выбора необходимости

провоза багажа (заголовок “Has baggage?”).

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

9

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

Третья форма отображается опционально при наличии у пассажира багажа

и содержит текстовое поле с его количеством (заголовок “Quantity”).

Завершает интерфейс четвертая форма для оплаты поездки с текстовым по-

лем для ввода данных банковской карты (заголовок “Card number”).

Кроме того, последним элементом каждой из форм является обычная

кнопка (тип “Button”) для завершения действий и перехода к следующей форме

(надпись “Ok”).

Для моделирования интерфейса требуется создание объектов соответству-

ющих классов, назначение им свойств и вызов соответствующих методов. Непо-

средственный программный код на языке Python по использованию вышеопи-

санного средства моделирования приведен в Листинге 1.

Листинг 1. Программный код моделирования интерфейса информационной системы (пример)

iface = Interface()

elem_1_1 = Element('Login', ElemType.TextBox, False)
elem_1_2 = Element('Password', ElemType.TextBox, True)
elem_1_3 = Element('Ok', ElemType.Button, False)
form_1 = Form('Enter')
form_1.AddElement(elem_1_1)
form_1.AddElement(elem_1_2)
form_1.AddElement(elem_1_3)

elem_2_1 = Element('Location', ElemType.TextBox, False)
elem_2_2 = Element('Date and time', ElemType.TextBox, False)
elem_2_3 = Element('Has baggage?', ElemType.CheckBox, False)
elem_2_4 = Element('Ok', ElemType.Button, False)
form_2 = Form('Ticket')
form_2.AddElement(elem_2_1)
form_2.AddElement(elem_2_2)
form_2.AddElement(elem_2_3)
form_2.AddElement(elem_2_4)

elem_3_1 = Element('Quantity', ElemType.TextBox, False)
elem_3_2 = Element('Ok', ElemType.Button, False)
form_3 = Form('Baggage')
form_3.AddElement(elem_3_1)
form_3.AddElement(elem_3_2)

elem_4_1 = Element('Card number', ElemType.TextBox, False)
elem_4_2 = Element('Ok', ElemType.Button, False)
form_4 = Form('Payment')
form_4.AddElement(elem_4_1)
form_4.AddElement(elem_4_2)

iface.AddForm(form_1)
iface.AddForm(form_2)
iface.AddForm(form_3)
iface.AddForm(form_4)
iface.SetRootForm(form_1)

iface.LinkForms(form_1, form_2)
iface.LinkForms(form_2, form_3, Condition(elem_2_3, True))
iface.LinkForms(form_2, form_4, Condition(elem_2_3, False))
iface.LinkForms(form_3, form_4)

Аналогичное программное моделирование двух инструкций (заказ без ба-

гажа и с ним) по работе с информационной системой в ее интерфейсе приведено

в Листинге 2.

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

10

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

Листинг 2. Программный код моделирования инструкций по работе с информационной

системой (пример)
instructions = []

instruction_1 = Instruction('Buy ticket without baggage')
instruction_1.AddStep(Step(elem_1_1, ActionType.Enter))
instruction_1.AddStep(Step(elem_1_2, ActionType.Enter))
instruction_1.AddStep(Step(elem_1_3, ActionType.Click))
instruction_1.AddStep(Step(elem_2_1, ActionType.Enter))
instruction_1.AddStep(Step(elem_2_2, ActionType.Enter))
instruction_1.AddStep(Step(elem_2_3, ActionType.Select, False))
instruction_1.AddStep(Step(elem_2_4, ActionType.Click))
instruction_1.AddStep(Step(elem_4_1, ActionType.Enter))
instruction_1.AddStep(Step(elem_4_2, ActionType.Click))
instructions.append(instruction_1)

instruction_2 = Instruction('Buy ticket with baggage')
instruction_2.AddStep(Step(elem_1_1, ActionType.Enter))
instruction_2.AddStep(Step(elem_1_2, ActionType.Enter))
instruction_2.AddStep(Step(elem_1_3, ActionType.Click))
instruction_2.AddStep(Step(elem_2_1, ActionType.Enter))
instruction_2.AddStep(Step(elem_2_2, ActionType.Enter))
instruction_2.AddStep(Step(elem_2_3, ActionType.Select, True))
instruction_2.AddStep(Step(elem_2_4, ActionType.Click))
instruction_2.AddStep(Step(elem_3_1, ActionType.Enter))
instruction_2.AddStep(Step(elem_3_2, ActionType.Click))
instruction_2.AddStep(Step(elem_4_1, ActionType.Enter))
instruction_2.AddStep(Step(elem_4_2, ActionType.Click))
instructions.append(instruction_2)

Соответственно, графическое изображение модели интерфейса, подходя-

щее для выполнения инструкций и генерируемое с помощью метода “BuildDot()”

у класса Interface приведено на рисунке 1; красным контуром помечено поле для

конфиденциальных данных, а жирным ‒ поле для проверки условия при выборе

следующей формы.

Рис. 1. Графическое изображение модели интерфейса для покупки билета

(с опциональным багажом)

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

11

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

Представление интерфейса является интуитивно понятным, соответствует

назначению информационной системы, классам средства моделирования и не

требует дополнительного пояснения. Для упрощения представления значения

поля “Properties” (класс “Element”) в графическом изображении интерфейса не

отображаются.

Заключение

В работе описана программная реализация средства моделирования интер-

фейса информационной системы и инструкций по работе с ней, основанная на ав-

торской аналитической модели. Полученная реализация позволяет моделировать

взаимодействие пользователя с информационной системой продуцирующего

типа; также, в модели интерфейса учитывается девиация поведения пользователя,

приводящая к нарушениям конфиденциальности, целостности и доступности ин-

формации. Средство моделирования является полностью работоспособным, что

демонстрирует проведенный эксперимент. Планируется продолжение исследова-

ния в направлении создания метода повышения устойчивости инструкций к деви-

ации поведения пользователя путем внесения в них уточняющих формулировок и

снижения тем самым вероятности ошибок выполнения.

Литература

1. Буйневич М. В., Моисеенко Г. Ю. Нарушение регламента при работе

с информационной системой как угроза безопасности информационным ресур-

сам // Региональная информатика и информационная безопасность: сборник тру-

дов Санкт-Петербургской международной конференции и Санкт-Петербургской

межрегиональной конференции (Санкт-Петербург, 23–25 октября 2024 г.). СПб.,

2024. С. 78–79. EDN: JRRYNA

2. Ковтунович М. Г., Маркачев К. Е. Информационный стресс // Психо-

логическая наука и образование. 2008. Т. 13. № 5. С. 83–91. EDN: JXDPBX

3. Моисеенко Г. Ю. Обзор способов формализации должностных рег-

ламентов деятельности (согласно отечественным исследованиям) // Националь-

ная безопасность и стратегическое планирование. 2024. № 4 (48). С. 35–42.

DOI: 10.37468/2307-1400-2024-4-35-42. EDN: EVKBGL

4. Буйневич М. В., Моисеенко Г. Ю. Повышение «устойчивости» рег-

ламентов деятельности как способ противодействия неумышленному инсай-

дингу // Вопросы кибербезопасности. 2024. № 6 (64). С. 108–116. DOI: 10.21681/

2311-3456-2024-6-108-116. EDN: HRNCWF

5. Царегородцев А. В., Романовский С. В., Волков С. Д., Самойлов В. Е.

Управление рисками информационной безопасности цифровых продуктов

финансовой экосистемы организации // Моделирование, оптимизация

и информационные технологии. 2020. Т. 8. № 4 (31). DOI: 10.26102/2310-6018/

2020.31.4.038. EDN: SKZBBF

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

12

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

6. Курта П. А. Взаимодействие пользователя с информационной системой.

Часть 1. Схема взаимодействия и классификация недостатков // Известия

СПбГЭТУ ЛЭТИ. 2020. № 8–9. С. 35–45. EDN: VLVMXL

7. Абдуллин Т. И., Баев В. Д., Буйневич М. В., Бурзунов Д. Д., Васильева И. Н.

и др. Цифровые технологии и проблемы информационной безопасности. СПб.:

СПГЭУ, 2021. 163 с. EDN: NXZPBQ

8. Буйневич М. В., Израилов К. Е. Авторская метрика оценки близости

программ: приложение для поиска уязвимостей с помощью генетической

деэволюции // Программные продукты и системы. 2025. Т. 38. № 1. С. 89–99.

DOI: 10.15827/0236-235X.149.089-099. EDN: RAPDHK

9. Вострых А. В. Алгоритм оценки эффективности визуальной эстетики

интерфейсов специализированных программных продуктов, используемых

экстренными службами // Национальная безопасность и стратегическое

планирование. 2024. № 3 (47). С. 77–89. DOI: 10.37468/2307-1400-2024-3-77-89.

EDN: BEEHGJ

10. Данилова М. В., Моллон Д. Д. Цветовые категории и цветоразличение //

Экспериментальная психология. 2010. Т. 3. № 3. С. 39–56. EDN: MWKCAD

11. Буйневич М. В., Моисеенко Г. Ю. Комбинирование разнородных де-

структивных воздействий на информационную систему и противодействие ата-

кам (на примере инсайдерской деятельности и DDoS-атаки) // Информационные

технологии и телекоммуникации. 2023. Т. 11. № 3. С. 27‒36. DOI: 10.31854/2307-

1303-2023-11-3-27-36. EDN: LWQWNX

Статья поступила 25 ноября 2025 г.

Одобрена после рецензирования 19 декабря 2025 г.
Принята к публикации 20 декабря 2025 г.

Информация об авторе

Моисеенко Григорий Юрьевич ‒ руководитель направления Министерства

обороны Российской Федерации. E-mail: mogreq@mail.ru

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

13

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

https://doi.org/10.31854/2307-1303-2025-13-4-1-14

EDN: SFRRWR

Modeling the Interface of an Information System and Instructions for Working

with It, Taking into Account the Deviation of User Behavior

G. Moiseenko

Ministry of Defense of the Russian Federation,

Moscow, 119160, Russian Federation

Problem statement. Unintentional violations by a user of instructions for working with an information

system, leading to information security threats (unintentional insider incidents), are a serious issue in the field

of information security. The main cause of such violations is that, due to a certain psycho-emotional state of

the user, a deviation in behavior occurs, and the user may make mistakes both in choosing and in working

with system interface elements: for example, entering confidential data into “open” fields. The aim of this

work is to describe a software tool for modeling, developed based on the author’s system interface model and

instructions. Research methods: computer modeling, software engineering, experiment. The result: in addi-

tion to the very fact of creating a software tool, its operability has been proven in terms of modeling the inter-

face in an information system and instructions for working with it, as well as the visibility of the resulting

graphical representation. The practical significance lies in the fact that this tool allows you to implement

a method to counteract the deviation of user behavior by solving the optimization problem of clarifying in-

structions in terms of the specification of the description of interface elements; at the same time, this task is

multi-criteria, since increasing the content of instructions leads to the opposite effect – complicating its per-

ception by humans.

Key words: unintentional insider, behavior deviation, modeling, software tool, experiment

References

1. Buinevich M., Moiseenko G. Threat to information resources security by

violating the rules of work with the information system // Proceedings of the St. Pe-

tersburg International Conference and the St. Petersburg Interregional Conference “Re-

gional Informatics and Information Security” (Saint Petersburg, October 23–25, 2024).

St. Petersburg, 2024. PP. 78–79. EDN: JRRYNA

2. Kovtunovich M. G., Markachev K. E. Information stress // Psychological Sci-

ence and Education. 2008. Vol. 13. Iss. 5. PP. 83–91. EDN: JXDPBX

3. Moiseenko G. Review of methods of formalizing job descriptions (according

to domestic research) // National Security and Strategic Planning. 2024. Iss. 4 (48).

PP. 35–42. DOI: 10.37468/2307-1400-2024-4-35-42. EDN: EVKBGL

4. Buinevich M. V., Moiseenko G. Yu. The instructions “resistant” increasing as

a way to counter unintentional insiding // Voprosy Kiberbezopasnosti. 2024. Iss. 6 (64).

PP. 108–116. DOI: 10.21681/2311-3456-2024-6-108-116. EDN: HRNCWF

5. Tsaregorodtsev A. V., Romanovskiy S. V., Volkov S. D., Samoylov V. E.

Digital products’ information security risk management in the organization financial

ecosystem // Modeling, Optimization and Information Technology. 2020. Vol. 8. Iss 4 (31).

DOI: 10.26102/2310-6018/2020.31.4.038. EDN: SKZBBF

Информационные технологии и телекоммуникации № 4. 2025

Telecom IT ISSN 2307-1303

DOI: 10.31854/2307-1303-2025-13-4-1-14

14

 URL: https://www.sut.ru/doci/nauka/1AEA/ITT/2025_4/1-14.pdf

6. Kurta P. A. Interaction of the user with the information system. Part 1. Scheme

of interaction and classification of disadvantages // News of ETU. 2020. Iss. 8–9.

PP. 35–45. EDN: VLVMXL

7. Abdullin T. I., Baev V. D., Buinevich M. V., Burzunov D. D., Vasilieva I. N.,

et al. Digital Technologies and Information Security Issues. St. Petersburg: Saint Peters-

burg State Economic University Publ., 2021. 163 p. EDN: NXZPBQ

8. Buynevich M. V., Izrailov K. E. Author’s metric for assessing proximity

of programs: application for vulnerability search using genetic de-evolution // Software

& Systems. Vol. 38. Iss. 1. PP. 89–99. DOI: 10.15827/0236-235X.149.089-099.

EDN: RAPDHK

9. Vostryh A. Algorithm for assessing the efficiency of visual aesthetics of

interfaces of specialized software products used by emergency services // National

Security and Strategic Planning. 2024. Iss. 3 (47). PP. 77–89. DOI: 10.37468/2307-

1400-2024-3-77-89. EDN: BEEHGJ

10. Danilova M. V., Mollon J. D. Color discrimination and color categories //

Experimental Psychology (Russia). 2010. Vol. 3. Iss. 3. PP. 39–56. EDN: MWKCAD

11. Buinevich M., Moiseenko G. Combining of heterogeneous destructive

impact on the information system and countering attacks (on Example by Insider

Activity and DDoS-attack) // Telecom IT. 2023. Vol. 11. Iss. 3. PP. 27‒36. (in Russian)

DOI: 10.31854/2307-1303-2023-11-3-27-36. EDN: LWQWNX

Information about Author

Moiseenko Grigory – Head of direction, Ministry of Defense of the Russian

Federation. E-mail: mogreq@mail.ru

